{"title":"基于随机森林回归和梯度增强的德国汉诺威地区ROP建模案例研究","authors":"Patrick Höhn, Felix Odebrett, C. Paz, J. Oppelt","doi":"10.1115/omae2020-18677","DOIUrl":null,"url":null,"abstract":"\n Reduction of drilling costs in the oil and gas industry and the geothermal energy sector is the main driver for major investments in drilling optimization research. The best way to reduce drilling costs is to minimize the overall time needed for drilling a well. This can be accomplished by optimizing the non-productive time during an operation, and through increasing the rate of penetration (ROP) while actively drilling. ROP has already been modeled in the past using empirical correlations. However, nowadays, methods from data science can be applied to the large data sets obtained during drilling operations, both for real-time prediction of drilling performance and for analysis of historical data sets during the evaluation of previous drilling activities. In the current study, data from a geothermal well in the Hanover region in Lower Saxony (Germany) were used to train machine learning models using Random Forest™ regression and Gradient Boosting. Both techniques showed promising results for modeling ROP.","PeriodicalId":403225,"journal":{"name":"Volume 11: Petroleum Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Case Study ROP Modeling Using Random Forest Regression and Gradient Boosting in the Hanover Region in Germany\",\"authors\":\"Patrick Höhn, Felix Odebrett, C. Paz, J. Oppelt\",\"doi\":\"10.1115/omae2020-18677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Reduction of drilling costs in the oil and gas industry and the geothermal energy sector is the main driver for major investments in drilling optimization research. The best way to reduce drilling costs is to minimize the overall time needed for drilling a well. This can be accomplished by optimizing the non-productive time during an operation, and through increasing the rate of penetration (ROP) while actively drilling. ROP has already been modeled in the past using empirical correlations. However, nowadays, methods from data science can be applied to the large data sets obtained during drilling operations, both for real-time prediction of drilling performance and for analysis of historical data sets during the evaluation of previous drilling activities. In the current study, data from a geothermal well in the Hanover region in Lower Saxony (Germany) were used to train machine learning models using Random Forest™ regression and Gradient Boosting. Both techniques showed promising results for modeling ROP.\",\"PeriodicalId\":403225,\"journal\":{\"name\":\"Volume 11: Petroleum Technology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Petroleum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Case Study ROP Modeling Using Random Forest Regression and Gradient Boosting in the Hanover Region in Germany
Reduction of drilling costs in the oil and gas industry and the geothermal energy sector is the main driver for major investments in drilling optimization research. The best way to reduce drilling costs is to minimize the overall time needed for drilling a well. This can be accomplished by optimizing the non-productive time during an operation, and through increasing the rate of penetration (ROP) while actively drilling. ROP has already been modeled in the past using empirical correlations. However, nowadays, methods from data science can be applied to the large data sets obtained during drilling operations, both for real-time prediction of drilling performance and for analysis of historical data sets during the evaluation of previous drilling activities. In the current study, data from a geothermal well in the Hanover region in Lower Saxony (Germany) were used to train machine learning models using Random Forest™ regression and Gradient Boosting. Both techniques showed promising results for modeling ROP.