基于潜在语义分析的文本地理特征分类方法

Yuxia Huang
{"title":"基于潜在语义分析的文本地理特征分类方法","authors":"Yuxia Huang","doi":"10.1109/ICSC.2011.15","DOIUrl":null,"url":null,"abstract":"Geographic feature categorization from text addresses the need for querying and finding geographic features from text documents. Although many text classification techniques have been developed, there are limitations to apply to geographic features due to the uniqueness of the geography features. In this paper we propose a method to classify geographic features based on latent semantic analysis and domain knowledge. The empirical experiment indicates that the proposed method achieves satisfactory categorizing effectiveness.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Latent Semantic Analysis-Based Approach to Geographic Feature Categorization from Text\",\"authors\":\"Yuxia Huang\",\"doi\":\"10.1109/ICSC.2011.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geographic feature categorization from text addresses the need for querying and finding geographic features from text documents. Although many text classification techniques have been developed, there are limitations to apply to geographic features due to the uniqueness of the geography features. In this paper we propose a method to classify geographic features based on latent semantic analysis and domain knowledge. The empirical experiment indicates that the proposed method achieves satisfactory categorizing effectiveness.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于文本的地理特征分类解决了从文本文档中查询和查找地理特征的需求。虽然已经开发了许多文本分类技术,但由于地理特征的独特性,在应用于地理特征时存在一定的局限性。本文提出了一种基于潜在语义分析和领域知识的地理特征分类方法。实证实验表明,该方法取得了满意的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Latent Semantic Analysis-Based Approach to Geographic Feature Categorization from Text
Geographic feature categorization from text addresses the need for querying and finding geographic features from text documents. Although many text classification techniques have been developed, there are limitations to apply to geographic features due to the uniqueness of the geography features. In this paper we propose a method to classify geographic features based on latent semantic analysis and domain knowledge. The empirical experiment indicates that the proposed method achieves satisfactory categorizing effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信