提高轮廓驱动的基于梯度的手部跟踪可靠性的生理建模

Paris Kaimakis, Joan Lasenby
{"title":"提高轮廓驱动的基于梯度的手部跟踪可靠性的生理建模","authors":"Paris Kaimakis, Joan Lasenby","doi":"10.1109/CVPRW.2009.5204252","DOIUrl":null,"url":null,"abstract":"We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Physiological modelling for improved reliability in silhouette-driven gradient-based hand tracking\",\"authors\":\"Paris Kaimakis, Joan Lasenby\",\"doi\":\"10.1109/CVPRW.2009.5204252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一个基于梯度的运动捕捉系统,该系统基于抽象的视觉信息-轮廓,可以鲁棒地跟踪人手。尽管视觉数据存在模糊性,尽管基于梯度的方法在面对这种模糊性时存在脆弱性,但我们通过使用手部生理学模型来最小化与不匹配相关的问题,该模型完全是非视觉的,主体不变的,并且假设是先验的。通过模拟手部生理的七个不同方面,我们得出了在贝叶斯框架内纳入跟踪系统的先验密度。我们演示了后验是如何形成的,以及我们的公式是如何使用基于梯度的搜索提取最大后验估计的。我们的结果表明,在跟踪精度和可靠性方面有了巨大的改进,同时也实现了接近实时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physiological modelling for improved reliability in silhouette-driven gradient-based hand tracking
We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信