DCE-MRI双组织室模型:贝叶斯方法

J. Kärcher, Volker J Schmid
{"title":"DCE-MRI双组织室模型:贝叶斯方法","authors":"J. Kärcher, Volker J Schmid","doi":"10.1109/ISBI.2010.5490074","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a compartment model with two interstitial space compartments for the quantitative description of the contrast medium kinetics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The model accounts for heterogeneity of contrast medium uptake behavior within voxels and thus more appropriately describes the uptake behavior in malignant tissue, especially at tumor margins. The posterior distribution obtained with a Bayesian approach provides valuable information on model fit and complexity as well as criteria for model selection. We propose a model selection technique to choose between the proposed two compartment model and the standard one compartment model per voxel. Results are evaluated for simulated and in vivo data.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Two tissue compartment model in DCE-MRI: A bayesian approach\",\"authors\":\"J. Kärcher, Volker J Schmid\",\"doi\":\"10.1109/ISBI.2010.5490074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a compartment model with two interstitial space compartments for the quantitative description of the contrast medium kinetics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The model accounts for heterogeneity of contrast medium uptake behavior within voxels and thus more appropriately describes the uptake behavior in malignant tissue, especially at tumor margins. The posterior distribution obtained with a Bayesian approach provides valuable information on model fit and complexity as well as criteria for model selection. We propose a model selection technique to choose between the proposed two compartment model and the standard one compartment model per voxel. Results are evaluated for simulated and in vivo data.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一个具有两个间隙空间的隔室模型,用于动态对比增强磁共振成像(DCE-MRI)中造影剂动力学的定量描述。该模型解释了体素内造影剂摄取行为的异质性,因此更恰当地描述了恶性组织,特别是肿瘤边缘的摄取行为。用贝叶斯方法得到的后验分布为模型拟合和复杂度提供了有价值的信息,也为模型选择提供了标准。我们提出了一种模型选择技术,在每体素的两室模型和标准一室模型之间进行选择。结果评估模拟和体内数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two tissue compartment model in DCE-MRI: A bayesian approach
In this paper, we propose a compartment model with two interstitial space compartments for the quantitative description of the contrast medium kinetics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The model accounts for heterogeneity of contrast medium uptake behavior within voxels and thus more appropriately describes the uptake behavior in malignant tissue, especially at tumor margins. The posterior distribution obtained with a Bayesian approach provides valuable information on model fit and complexity as well as criteria for model selection. We propose a model selection technique to choose between the proposed two compartment model and the standard one compartment model per voxel. Results are evaluated for simulated and in vivo data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信