结合文档表示进行已知项搜索

Paul Ogilvie, Jamie Callan
{"title":"结合文档表示进行已知项搜索","authors":"Paul Ogilvie, Jamie Callan","doi":"10.1145/860435.860463","DOIUrl":null,"url":null,"abstract":"This paper investigates the pre-conditions for successful combination of document representations formed from structural markup for the task of known-item search. As this task is very similar to work in meta-search and data fusion, we adapt several hypotheses from those research areas and investigate them in this context. To investigate these hypotheses, we present a mixture-based language model and also examine many of the current meta-search algorithms. We find that compatible output from systems is important for successful combination of document representations. We also demonstrate that combining low performing document representations can improve performance, but not consistently. We find that the techniques best suited for this task are robust to the inclusion of poorly performing document representations. We also explore the role of variance of results across systems and its impact on the performance of fusion, with the surprising result that the correct documents have higher variance across document representations than highly ranking incorrect documents.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"270","resultStr":"{\"title\":\"Combining document representations for known-item search\",\"authors\":\"Paul Ogilvie, Jamie Callan\",\"doi\":\"10.1145/860435.860463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the pre-conditions for successful combination of document representations formed from structural markup for the task of known-item search. As this task is very similar to work in meta-search and data fusion, we adapt several hypotheses from those research areas and investigate them in this context. To investigate these hypotheses, we present a mixture-based language model and also examine many of the current meta-search algorithms. We find that compatible output from systems is important for successful combination of document representations. We also demonstrate that combining low performing document representations can improve performance, but not consistently. We find that the techniques best suited for this task are robust to the inclusion of poorly performing document representations. We also explore the role of variance of results across systems and its impact on the performance of fusion, with the surprising result that the correct documents have higher variance across document representations than highly ranking incorrect documents.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"270\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 270

摘要

本文研究了结构化标记形成的文档表示成功组合用于已知项搜索任务的前提条件。由于这项任务与元搜索和数据融合的工作非常相似,我们采用了这些研究领域的几个假设,并在此背景下对它们进行了研究。为了研究这些假设,我们提出了一个基于混合的语言模型,并研究了许多当前的元搜索算法。我们发现系统的兼容输出对于文档表示的成功组合很重要。我们还演示了组合低性能的文档表示可以提高性能,但不是一致的。我们发现最适合这项任务的技术对于包含性能较差的文档表示具有鲁棒性。我们还探讨了跨系统结果方差的作用及其对融合性能的影响,令人惊讶的结果是,正确的文档在文档表示之间的方差比排名较高的不正确文档更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining document representations for known-item search
This paper investigates the pre-conditions for successful combination of document representations formed from structural markup for the task of known-item search. As this task is very similar to work in meta-search and data fusion, we adapt several hypotheses from those research areas and investigate them in this context. To investigate these hypotheses, we present a mixture-based language model and also examine many of the current meta-search algorithms. We find that compatible output from systems is important for successful combination of document representations. We also demonstrate that combining low performing document representations can improve performance, but not consistently. We find that the techniques best suited for this task are robust to the inclusion of poorly performing document representations. We also explore the role of variance of results across systems and its impact on the performance of fusion, with the surprising result that the correct documents have higher variance across document representations than highly ranking incorrect documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信