一种快速鲁棒的视频监控人员计数方法

Enwei Zhang, Feng Chen
{"title":"一种快速鲁棒的视频监控人员计数方法","authors":"Enwei Zhang, Feng Chen","doi":"10.1109/CIS.2007.85","DOIUrl":null,"url":null,"abstract":"Video surveillance has become more and more prevalent. It is a basic problem to get the number of access people in scenes. When occlusions occur, it becomes difficult to count people. We propose a fast and robust people counting method, and implement a system. In our system, we use group tracking to compensate weakness of multiple human segmentation, which can handle complete occlusion. Our system can run in real-time about 30fps for CIF video, with counting accuracy defined by frame above 95%.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A Fast and Robust People Counting Method in Video Surveillance\",\"authors\":\"Enwei Zhang, Feng Chen\",\"doi\":\"10.1109/CIS.2007.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video surveillance has become more and more prevalent. It is a basic problem to get the number of access people in scenes. When occlusions occur, it becomes difficult to count people. We propose a fast and robust people counting method, and implement a system. In our system, we use group tracking to compensate weakness of multiple human segmentation, which can handle complete occlusion. Our system can run in real-time about 30fps for CIF video, with counting accuracy defined by frame above 95%.\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

视频监控已经变得越来越普遍。如何获取场景中的访问人数是一个基本问题。当发生闭塞时,计数就变得困难了。提出了一种快速、鲁棒的人数统计方法,并实现了一个系统。在我们的系统中,我们使用群体跟踪来弥补多人分割的缺点,可以处理完全遮挡。我们的系统可以实时运行30fps左右的CIF视频,帧数定义的计数精度在95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast and Robust People Counting Method in Video Surveillance
Video surveillance has become more and more prevalent. It is a basic problem to get the number of access people in scenes. When occlusions occur, it becomes difficult to count people. We propose a fast and robust people counting method, and implement a system. In our system, we use group tracking to compensate weakness of multiple human segmentation, which can handle complete occlusion. Our system can run in real-time about 30fps for CIF video, with counting accuracy defined by frame above 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信