构造神经网络平铺算法的两种变体

J. R. Bertini, M. C. Nicoletti, Estevam Hruschka, A. Ramer
{"title":"构造神经网络平铺算法的两种变体","authors":"J. R. Bertini, M. C. Nicoletti, Estevam Hruschka, A. Ramer","doi":"10.1109/HIS.2006.74","DOIUrl":null,"url":null,"abstract":"Unlike conventional neural network (NN) algorithms that require the definition of the NN architecture before learning starts, constructive neural network (CoNN) algorithms enable the NN architecture to be constructed along with the learning process. CoNN algorithms are very dependent on the TLU training algorithm they employ. Generally in their original proposal CoNN algorithms use a Perceptron-based algorithm for training each individual node added to the network during the learning process. This paper proposes two hybrid variants of the CoNN algorithm known as Tiling, referred to as Tiling_V1 and Tiling_V2. The two variants differ from the original Tiling in respect to the algorithm they use for training individual TLUs added to the NN. The master neuron in each hidden layer constructed by Tiling_V1 can be trained either by PRM (Pocket with Ratchet Modification) or BCPMin (Barycentric Correction Procedure) while the auxiliary neurons are always trained using BCPMin. In Tiling_V2 the same algorithm used to train the master neuron of each hidden layer is also used to train the auxiliary neurons. Both variants as well as the original Tiling (using PRM or BCPMin) have been used in learning tasks involving 7 knowledge domains. In 6 out of 7 domains results obtained with one of the variants are in the top two best results.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two Variants of the Constructive Neural Network Tiling Algorithm\",\"authors\":\"J. R. Bertini, M. C. Nicoletti, Estevam Hruschka, A. Ramer\",\"doi\":\"10.1109/HIS.2006.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike conventional neural network (NN) algorithms that require the definition of the NN architecture before learning starts, constructive neural network (CoNN) algorithms enable the NN architecture to be constructed along with the learning process. CoNN algorithms are very dependent on the TLU training algorithm they employ. Generally in their original proposal CoNN algorithms use a Perceptron-based algorithm for training each individual node added to the network during the learning process. This paper proposes two hybrid variants of the CoNN algorithm known as Tiling, referred to as Tiling_V1 and Tiling_V2. The two variants differ from the original Tiling in respect to the algorithm they use for training individual TLUs added to the NN. The master neuron in each hidden layer constructed by Tiling_V1 can be trained either by PRM (Pocket with Ratchet Modification) or BCPMin (Barycentric Correction Procedure) while the auxiliary neurons are always trained using BCPMin. In Tiling_V2 the same algorithm used to train the master neuron of each hidden layer is also used to train the auxiliary neurons. Both variants as well as the original Tiling (using PRM or BCPMin) have been used in learning tasks involving 7 knowledge domains. In 6 out of 7 domains results obtained with one of the variants are in the top two best results.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的神经网络(NN)算法需要在学习开始之前定义神经网络架构,而构造性神经网络(CoNN)算法使神经网络架构能够随着学习过程而构建。CoNN算法非常依赖于它们使用的TLU训练算法。通常在他们最初的提议中,CoNN算法使用基于感知器的算法来训练在学习过程中添加到网络中的每个单独节点。本文提出了CoNN算法Tiling的两种混合变体,称为Tiling_V1和Tiling_V2。这两个变体与原始Tiling的不同之处在于它们用于训练添加到NN中的单个tlu的算法。Tiling_V1构造的每个隐藏层中的主神经元可以用PRM (Pocket with Ratchet Modification)或BCPMin (Barycentric Correction Procedure)来训练,而辅助神经元总是用BCPMin来训练。在Tiling_V2中,用于训练每个隐藏层的主神经元的相同算法也用于训练辅助神经元。这两种变体以及原始的Tiling(使用PRM或BCPMin)已用于涉及7个知识领域的学习任务。在7个域中的6个域中,其中一个变体获得的结果是前两个最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Variants of the Constructive Neural Network Tiling Algorithm
Unlike conventional neural network (NN) algorithms that require the definition of the NN architecture before learning starts, constructive neural network (CoNN) algorithms enable the NN architecture to be constructed along with the learning process. CoNN algorithms are very dependent on the TLU training algorithm they employ. Generally in their original proposal CoNN algorithms use a Perceptron-based algorithm for training each individual node added to the network during the learning process. This paper proposes two hybrid variants of the CoNN algorithm known as Tiling, referred to as Tiling_V1 and Tiling_V2. The two variants differ from the original Tiling in respect to the algorithm they use for training individual TLUs added to the NN. The master neuron in each hidden layer constructed by Tiling_V1 can be trained either by PRM (Pocket with Ratchet Modification) or BCPMin (Barycentric Correction Procedure) while the auxiliary neurons are always trained using BCPMin. In Tiling_V2 the same algorithm used to train the master neuron of each hidden layer is also used to train the auxiliary neurons. Both variants as well as the original Tiling (using PRM or BCPMin) have been used in learning tasks involving 7 knowledge domains. In 6 out of 7 domains results obtained with one of the variants are in the top two best results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信