{"title":"下行OFDMA系统中联合子载波分配和预编码器设计的SOCP方法","authors":"D. Nguyen, Le-Nam Tran, P. Pirinen, M. Latva-aho","doi":"10.1109/WCNC.2014.6952328","DOIUrl":null,"url":null,"abstract":"We study the joint subcarrier allocation and pre-coder design (JSAPD) problem to maximize the sum rate of downlink orthogonal frequency division multiple access (OFDMA) systems under a sum power constraint. Naturally, this problem belongs to a class of combinatorial optimization problems which are difficult to solve in general. Based on the concept of big-M formulation, and by exploiting its specific structure, we can transform the JSAPD problem into a mixed integer second order cone program (MI-SOCP), which then offers two advantages. Firstly, when the number of subcarriers/users is small, the design problem can be solved to global optimum in reasonable time by dedicated solvers. Secondly, when the number of subcarriers/users is large, near-optimal solutions of the JSAPD problem can be found by considering the continuous convex relaxation of the MI-SOCP. Numerical experiments are carried out to demonstrate the improved performance of the proposed designs compared to known solutions.","PeriodicalId":220393,"journal":{"name":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOCP approaches to joint subcarrier allocation and precoder design for downlink OFDMA systems\",\"authors\":\"D. Nguyen, Le-Nam Tran, P. Pirinen, M. Latva-aho\",\"doi\":\"10.1109/WCNC.2014.6952328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the joint subcarrier allocation and pre-coder design (JSAPD) problem to maximize the sum rate of downlink orthogonal frequency division multiple access (OFDMA) systems under a sum power constraint. Naturally, this problem belongs to a class of combinatorial optimization problems which are difficult to solve in general. Based on the concept of big-M formulation, and by exploiting its specific structure, we can transform the JSAPD problem into a mixed integer second order cone program (MI-SOCP), which then offers two advantages. Firstly, when the number of subcarriers/users is small, the design problem can be solved to global optimum in reasonable time by dedicated solvers. Secondly, when the number of subcarriers/users is large, near-optimal solutions of the JSAPD problem can be found by considering the continuous convex relaxation of the MI-SOCP. Numerical experiments are carried out to demonstrate the improved performance of the proposed designs compared to known solutions.\",\"PeriodicalId\":220393,\"journal\":{\"name\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2014.6952328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2014.6952328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOCP approaches to joint subcarrier allocation and precoder design for downlink OFDMA systems
We study the joint subcarrier allocation and pre-coder design (JSAPD) problem to maximize the sum rate of downlink orthogonal frequency division multiple access (OFDMA) systems under a sum power constraint. Naturally, this problem belongs to a class of combinatorial optimization problems which are difficult to solve in general. Based on the concept of big-M formulation, and by exploiting its specific structure, we can transform the JSAPD problem into a mixed integer second order cone program (MI-SOCP), which then offers two advantages. Firstly, when the number of subcarriers/users is small, the design problem can be solved to global optimum in reasonable time by dedicated solvers. Secondly, when the number of subcarriers/users is large, near-optimal solutions of the JSAPD problem can be found by considering the continuous convex relaxation of the MI-SOCP. Numerical experiments are carried out to demonstrate the improved performance of the proposed designs compared to known solutions.