高维向量相似搜索:从时间序列到深度网络嵌入

Karima Echihabi
{"title":"高维向量相似搜索:从时间序列到深度网络嵌入","authors":"Karima Echihabi","doi":"10.1145/3318464.3384402","DOIUrl":null,"url":null,"abstract":"Similarity search is an important and challenging problem that is typically modeled as nearest neighbor search in high dimensional space, where objects are represented as high dimensional vectors and their (dis)similarity is evaluated using a distance measure such as the Euclidean distance.","PeriodicalId":436122,"journal":{"name":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"High-Dimensional Vector Similarity Search: From Time Series to Deep Network Embeddings\",\"authors\":\"Karima Echihabi\",\"doi\":\"10.1145/3318464.3384402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search is an important and challenging problem that is typically modeled as nearest neighbor search in high dimensional space, where objects are represented as high dimensional vectors and their (dis)similarity is evaluated using a distance measure such as the Euclidean distance.\",\"PeriodicalId\":436122,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"398 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318464.3384402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318464.3384402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

相似度搜索是一个重要且具有挑战性的问题,通常被建模为高维空间中的最近邻搜索,其中对象被表示为高维向量,并且使用距离度量(如欧几里得距离)来评估它们的(非)相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Dimensional Vector Similarity Search: From Time Series to Deep Network Embeddings
Similarity search is an important and challenging problem that is typically modeled as nearest neighbor search in high dimensional space, where objects are represented as high dimensional vectors and their (dis)similarity is evaluated using a distance measure such as the Euclidean distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信