{"title":"高维向量相似搜索:从时间序列到深度网络嵌入","authors":"Karima Echihabi","doi":"10.1145/3318464.3384402","DOIUrl":null,"url":null,"abstract":"Similarity search is an important and challenging problem that is typically modeled as nearest neighbor search in high dimensional space, where objects are represented as high dimensional vectors and their (dis)similarity is evaluated using a distance measure such as the Euclidean distance.","PeriodicalId":436122,"journal":{"name":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"High-Dimensional Vector Similarity Search: From Time Series to Deep Network Embeddings\",\"authors\":\"Karima Echihabi\",\"doi\":\"10.1145/3318464.3384402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search is an important and challenging problem that is typically modeled as nearest neighbor search in high dimensional space, where objects are represented as high dimensional vectors and their (dis)similarity is evaluated using a distance measure such as the Euclidean distance.\",\"PeriodicalId\":436122,\"journal\":{\"name\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"398 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318464.3384402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318464.3384402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Dimensional Vector Similarity Search: From Time Series to Deep Network Embeddings
Similarity search is an important and challenging problem that is typically modeled as nearest neighbor search in high dimensional space, where objects are represented as high dimensional vectors and their (dis)similarity is evaluated using a distance measure such as the Euclidean distance.