超低能量应用的全耗尽MOSFET生物似然突触

Abhash Kumar, Alok Kumar Kamal, Jawar Singh, B. Gupta
{"title":"超低能量应用的全耗尽MOSFET生物似然突触","authors":"Abhash Kumar, Alok Kumar Kamal, Jawar Singh, B. Gupta","doi":"10.1109/IEEECONF58372.2023.10177580","DOIUrl":null,"url":null,"abstract":"The basic unit of most of the AI/ML based systems is the neuron. The biological neuron has intriguing capability to process mammoth data in a flash of seconds and that too at extremely low energy overhead in range of few femto-Joules. However, most of the previously proposed electronic synapse lacks this ultra-low energy consuming capability of the neuron. So, in this work, an ultra-low energy synaptic semiconductor device operating in subthreshold conduction region have been demonstrated for real-time artificial intelligence (AI) applications. The proposed device is a fully depleted (FD) metal-oxide-semiconductor field-effect transistor (MOSFET) with charge trapping and de-trapping capabilities for synaptic weight modulation. The proposed device was observed to be $\\approx 10^{3}$ times more energy efficient than previous electronic synapses.","PeriodicalId":105642,"journal":{"name":"2023 27th International Conference Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Depleted MOSFET Based Bio-Plausible Synapse for Ultra-Low Energy Applications\",\"authors\":\"Abhash Kumar, Alok Kumar Kamal, Jawar Singh, B. Gupta\",\"doi\":\"10.1109/IEEECONF58372.2023.10177580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic unit of most of the AI/ML based systems is the neuron. The biological neuron has intriguing capability to process mammoth data in a flash of seconds and that too at extremely low energy overhead in range of few femto-Joules. However, most of the previously proposed electronic synapse lacks this ultra-low energy consuming capability of the neuron. So, in this work, an ultra-low energy synaptic semiconductor device operating in subthreshold conduction region have been demonstrated for real-time artificial intelligence (AI) applications. The proposed device is a fully depleted (FD) metal-oxide-semiconductor field-effect transistor (MOSFET) with charge trapping and de-trapping capabilities for synaptic weight modulation. The proposed device was observed to be $\\\\approx 10^{3}$ times more energy efficient than previous electronic synapses.\",\"PeriodicalId\":105642,\"journal\":{\"name\":\"2023 27th International Conference Electronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 27th International Conference Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF58372.2023.10177580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 27th International Conference Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF58372.2023.10177580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数基于AI/ML的系统的基本单位是神经元。这种生物神经元具有令人着迷的能力,可以在几秒钟内处理大量数据,而且能耗极低,只有几飞焦耳。然而,大多数先前提出的电子突触缺乏这种神经元的超低能量消耗能力。因此,在这项工作中,超低能量的突触半导体器件工作在亚阈值传导区已经证明了实时人工智能(AI)的应用。该器件是一种完全耗尽(FD)金属氧化物半导体场效应晶体管(MOSFET),具有电荷捕获和解除捕获功能,用于突触重量调制。所提出的装置被观察到比以前的电子突触的能量效率高约10^{3}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Depleted MOSFET Based Bio-Plausible Synapse for Ultra-Low Energy Applications
The basic unit of most of the AI/ML based systems is the neuron. The biological neuron has intriguing capability to process mammoth data in a flash of seconds and that too at extremely low energy overhead in range of few femto-Joules. However, most of the previously proposed electronic synapse lacks this ultra-low energy consuming capability of the neuron. So, in this work, an ultra-low energy synaptic semiconductor device operating in subthreshold conduction region have been demonstrated for real-time artificial intelligence (AI) applications. The proposed device is a fully depleted (FD) metal-oxide-semiconductor field-effect transistor (MOSFET) with charge trapping and de-trapping capabilities for synaptic weight modulation. The proposed device was observed to be $\approx 10^{3}$ times more energy efficient than previous electronic synapses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信