一种高效的事务数据流频繁项集挖掘算法

Zhaoyang Qu, Peng Li, Yaying Li
{"title":"一种高效的事务数据流频繁项集挖掘算法","authors":"Zhaoyang Qu, Peng Li, Yaying Li","doi":"10.1109/ICICIP.2010.5565215","DOIUrl":null,"url":null,"abstract":"The mobility and unlimitedness of data streams make the traditional frequent itemsets mining algorithm no longer applicable. In this paper, according to the characteristics of data streams, we propose a novel algorithm MFIBA(Mining Frequent Itemsets based on Bitwise AND) based on bitwise AND operation for mining frequent itemsets. This algorithm updates the sliding window with basic window, and maintains item's frequent information in the memory with the array structure, finally obtains all the frequent itemsets by using bitwise AND operations between items. The arrays are updated dynamically when a basic window is inserted into the sliding window, the analysis and experiment results show that this algorithm has good performance.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A high-efficiency algorithm for Mining Frequent Itemsets over transaction data streams\",\"authors\":\"Zhaoyang Qu, Peng Li, Yaying Li\",\"doi\":\"10.1109/ICICIP.2010.5565215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mobility and unlimitedness of data streams make the traditional frequent itemsets mining algorithm no longer applicable. In this paper, according to the characteristics of data streams, we propose a novel algorithm MFIBA(Mining Frequent Itemsets based on Bitwise AND) based on bitwise AND operation for mining frequent itemsets. This algorithm updates the sliding window with basic window, and maintains item's frequent information in the memory with the array structure, finally obtains all the frequent itemsets by using bitwise AND operations between items. The arrays are updated dynamically when a basic window is inserted into the sliding window, the analysis and experiment results show that this algorithm has good performance.\",\"PeriodicalId\":152024,\"journal\":{\"name\":\"2010 International Conference on Intelligent Control and Information Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2010.5565215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5565215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据流的移动性和无限性使得传统的频繁项集挖掘算法不再适用。本文根据数据流的特点,提出了一种基于位与运算的频繁项集挖掘算法MFIBA(Mining frequency Itemsets based on Bitwise AND)。该算法利用基本窗口对滑动窗口进行更新,并利用数组结构将项目的频繁信息保存在内存中,最后通过项目之间的位与运算获得所有频繁项目集。当在滑动窗口中插入基本窗口时,可以动态更新数组,分析和实验结果表明该算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-efficiency algorithm for Mining Frequent Itemsets over transaction data streams
The mobility and unlimitedness of data streams make the traditional frequent itemsets mining algorithm no longer applicable. In this paper, according to the characteristics of data streams, we propose a novel algorithm MFIBA(Mining Frequent Itemsets based on Bitwise AND) based on bitwise AND operation for mining frequent itemsets. This algorithm updates the sliding window with basic window, and maintains item's frequent information in the memory with the array structure, finally obtains all the frequent itemsets by using bitwise AND operations between items. The arrays are updated dynamically when a basic window is inserted into the sliding window, the analysis and experiment results show that this algorithm has good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信