基于林登迈尔系统的分层遗传策略建模

J. Kolodziej
{"title":"基于林登迈尔系统的分层遗传策略建模","authors":"J. Kolodziej","doi":"10.1109/PCEE.2002.1115312","DOIUrl":null,"url":null,"abstract":"A hierarchical genetic strategy is an effective tool in solving ill posed global optimization problems. We use a context-sensitive stochastic Lindenmayer system to describe the structure of HGS. The results of simple numerical experiments are reported. We try to use this strategy in robot motion planning.","PeriodicalId":444003,"journal":{"name":"Proceedings. International Conference on Parallel Computing in Electrical Engineering","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling hierarchical genetic strategy as a Lindenmayer system\",\"authors\":\"J. Kolodziej\",\"doi\":\"10.1109/PCEE.2002.1115312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hierarchical genetic strategy is an effective tool in solving ill posed global optimization problems. We use a context-sensitive stochastic Lindenmayer system to describe the structure of HGS. The results of simple numerical experiments are reported. We try to use this strategy in robot motion planning.\",\"PeriodicalId\":444003,\"journal\":{\"name\":\"Proceedings. International Conference on Parallel Computing in Electrical Engineering\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Parallel Computing in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCEE.2002.1115312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Parallel Computing in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEE.2002.1115312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

层次遗传策略是求解病态全局优化问题的有效工具。我们使用上下文敏感的随机Lindenmayer系统来描述HGS的结构。本文报道了简单的数值实验结果。我们尝试将此策略应用于机器人运动规划中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling hierarchical genetic strategy as a Lindenmayer system
A hierarchical genetic strategy is an effective tool in solving ill posed global optimization problems. We use a context-sensitive stochastic Lindenmayer system to describe the structure of HGS. The results of simple numerical experiments are reported. We try to use this strategy in robot motion planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信