针对在线反意见垃圾:从评论序列中发现虚假评论

Yuming Lin, Tao Zhu, Hao Wu, Jingwei Zhang, Xiaoling Wang, Aoying Zhou
{"title":"针对在线反意见垃圾:从评论序列中发现虚假评论","authors":"Yuming Lin, Tao Zhu, Hao Wu, Jingwei Zhang, Xiaoling Wang, Aoying Zhou","doi":"10.1109/ASONAM.2014.6921594","DOIUrl":null,"url":null,"abstract":"Detecting review spam is important for current e-commerce applications. However, the posted order of review has been neglected by the former work. In this paper, we explore the issue on fake review detection in review sequence, which is crucial for implementing online anti-opinion spam. We analyze the characteristics of fake reviews firstly. Based on review contents and reviewer behaviors, six time sensitive features are proposed to highlight the fake reviews. And then, we devise supervised solutions and a threshold-based solution to spot the fake reviews as early as possible. The experimental results show that our methods can identify the fake reviews orderly with high precision and recall.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Towards online anti-opinion spam: Spotting fake reviews from the review sequence\",\"authors\":\"Yuming Lin, Tao Zhu, Hao Wu, Jingwei Zhang, Xiaoling Wang, Aoying Zhou\",\"doi\":\"10.1109/ASONAM.2014.6921594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting review spam is important for current e-commerce applications. However, the posted order of review has been neglected by the former work. In this paper, we explore the issue on fake review detection in review sequence, which is crucial for implementing online anti-opinion spam. We analyze the characteristics of fake reviews firstly. Based on review contents and reviewer behaviors, six time sensitive features are proposed to highlight the fake reviews. And then, we devise supervised solutions and a threshold-based solution to spot the fake reviews as early as possible. The experimental results show that our methods can identify the fake reviews orderly with high precision and recall.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

检测评论垃圾邮件对于当前的电子商务应用程序非常重要。然而,以往的工作忽略了发布的审查顺序。在本文中,我们探讨了评论序列中的虚假评论检测问题,这是实施在线反意见垃圾邮件的关键。我们首先分析虚假评论的特点。基于评论内容和评论者行为,提出了六个时间敏感特征来突出虚假评论。然后,我们设计监督解决方案和基于阈值的解决方案,以便尽早发现虚假评论。实验结果表明,该方法能够有序地识别虚假评论,具有较高的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards online anti-opinion spam: Spotting fake reviews from the review sequence
Detecting review spam is important for current e-commerce applications. However, the posted order of review has been neglected by the former work. In this paper, we explore the issue on fake review detection in review sequence, which is crucial for implementing online anti-opinion spam. We analyze the characteristics of fake reviews firstly. Based on review contents and reviewer behaviors, six time sensitive features are proposed to highlight the fake reviews. And then, we devise supervised solutions and a threshold-based solution to spot the fake reviews as early as possible. The experimental results show that our methods can identify the fake reviews orderly with high precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信