{"title":"基于VSP数据上行和下行分离波场的速度和Q估计","authors":"C. Jin, D. Cao, B. Zhou","doi":"10.3997/2214-4609.202113294","DOIUrl":null,"url":null,"abstract":"Summary Quality factor (Q-factor) evaluates the attenuation of seismic wave propagation, playing a fundamental role of reservoir characterization, which can be obtained accurately from Vertical Seismic Profile (VSP). The common methods usually use the downgoing wavefields in VSP data. However, the downgoing wavefields consist of more than 90% energy of the spectrum of the VSP data due to the energy fraction of the upgoing and downgoing wavefields, which makes difficult to estimate the viscoacoustic parameters accurately. Thus, a joint viscoacoustic waveform inversion of velocity and Q-factor is proposed to measure the difference between the separated upgoing and downgoing wavefields in VSP data based on the multi-objective functions. A simple separating step is accomplished by the reflectivity method to obtain the pure individual wavefields in VSP data, and then a joint inversion step is carried out to make full use of the information of the individual wavefields and improve the convergence of viscoacoustic waveform inversion. The sensitivity analysis about the velocity and Q-factor shows that the upgoing and downgoing wavefields contribute differently to the viscoacoustic parameters. Numerical examples and a field test indicate the accuracy and efficiency of the proposed method.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity and Q estimation from the separated upgoing and downgoing wavefields in VSP data\",\"authors\":\"C. Jin, D. Cao, B. Zhou\",\"doi\":\"10.3997/2214-4609.202113294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Quality factor (Q-factor) evaluates the attenuation of seismic wave propagation, playing a fundamental role of reservoir characterization, which can be obtained accurately from Vertical Seismic Profile (VSP). The common methods usually use the downgoing wavefields in VSP data. However, the downgoing wavefields consist of more than 90% energy of the spectrum of the VSP data due to the energy fraction of the upgoing and downgoing wavefields, which makes difficult to estimate the viscoacoustic parameters accurately. Thus, a joint viscoacoustic waveform inversion of velocity and Q-factor is proposed to measure the difference between the separated upgoing and downgoing wavefields in VSP data based on the multi-objective functions. A simple separating step is accomplished by the reflectivity method to obtain the pure individual wavefields in VSP data, and then a joint inversion step is carried out to make full use of the information of the individual wavefields and improve the convergence of viscoacoustic waveform inversion. The sensitivity analysis about the velocity and Q-factor shows that the upgoing and downgoing wavefields contribute differently to the viscoacoustic parameters. Numerical examples and a field test indicate the accuracy and efficiency of the proposed method.\",\"PeriodicalId\":265130,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202113294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity and Q estimation from the separated upgoing and downgoing wavefields in VSP data
Summary Quality factor (Q-factor) evaluates the attenuation of seismic wave propagation, playing a fundamental role of reservoir characterization, which can be obtained accurately from Vertical Seismic Profile (VSP). The common methods usually use the downgoing wavefields in VSP data. However, the downgoing wavefields consist of more than 90% energy of the spectrum of the VSP data due to the energy fraction of the upgoing and downgoing wavefields, which makes difficult to estimate the viscoacoustic parameters accurately. Thus, a joint viscoacoustic waveform inversion of velocity and Q-factor is proposed to measure the difference between the separated upgoing and downgoing wavefields in VSP data based on the multi-objective functions. A simple separating step is accomplished by the reflectivity method to obtain the pure individual wavefields in VSP data, and then a joint inversion step is carried out to make full use of the information of the individual wavefields and improve the convergence of viscoacoustic waveform inversion. The sensitivity analysis about the velocity and Q-factor shows that the upgoing and downgoing wavefields contribute differently to the viscoacoustic parameters. Numerical examples and a field test indicate the accuracy and efficiency of the proposed method.