基于特征工程驱动深度学习模型的客户评论有用性预测

Suryanarayan Sharma, Laxman Singh, Rajdev Tiwari
{"title":"基于特征工程驱动深度学习模型的客户评论有用性预测","authors":"Suryanarayan Sharma, Laxman Singh, Rajdev Tiwari","doi":"10.4018/ijsi.315734","DOIUrl":null,"url":null,"abstract":"Online consumer reviews play a pivotal role in boosting online shopping. After Covid-19, the e-commerce industry has been grown exponentially. The e-commerce industry is greatly impacted by the online customer reviews, and a lot of work has been done in this regard to identify the usefulness of reviews for purchasing online products. In this proposed work, predicting helpfulness is taken as binary classification problem to identify the helpfulness of a review in context to structural, sentimental, and voting feature sets. In this study, the authors implemented various leading ML algorithms such as KNN, LR, GNB, LDA and CNN. In comparison to these algorithms and other existing state of art methods, CNN yielded better classification results, achieving highest accuracy of 95.27%. Besides, the performance of these models was also assessed in terms of precision, recall, F1 score, etc. The results shown in this paper demonstrate that proposed model will help the producers or service providers to improve and grow their business.","PeriodicalId":396598,"journal":{"name":"Int. J. Softw. Innov.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of Customer Review's Helpfulness Based on Feature Engineering Driven Deep Learning Model\",\"authors\":\"Suryanarayan Sharma, Laxman Singh, Rajdev Tiwari\",\"doi\":\"10.4018/ijsi.315734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online consumer reviews play a pivotal role in boosting online shopping. After Covid-19, the e-commerce industry has been grown exponentially. The e-commerce industry is greatly impacted by the online customer reviews, and a lot of work has been done in this regard to identify the usefulness of reviews for purchasing online products. In this proposed work, predicting helpfulness is taken as binary classification problem to identify the helpfulness of a review in context to structural, sentimental, and voting feature sets. In this study, the authors implemented various leading ML algorithms such as KNN, LR, GNB, LDA and CNN. In comparison to these algorithms and other existing state of art methods, CNN yielded better classification results, achieving highest accuracy of 95.27%. Besides, the performance of these models was also assessed in terms of precision, recall, F1 score, etc. The results shown in this paper demonstrate that proposed model will help the producers or service providers to improve and grow their business.\",\"PeriodicalId\":396598,\"journal\":{\"name\":\"Int. J. Softw. Innov.\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsi.315734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.315734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在线消费者评论在推动网上购物方面发挥着关键作用。新冠肺炎疫情后,电商行业呈指数级增长。电子商务行业受到在线客户评论的极大影响,在这方面已经做了很多工作来确定评论对在线购买产品的有用性。在本研究中,我们将预测有用性作为一个二元分类问题来识别评论对结构、情感和投票特征集的有用性。在这项研究中,作者实现了各种领先的ML算法,如KNN, LR, GNB, LDA和CNN。与这些算法和其他现有的最先进的方法相比,CNN的分类结果更好,准确率最高,达到95.27%。此外,还从准确率、召回率、F1分数等方面对这些模型的性能进行了评估。本文的研究结果表明,所提出的模型将有助于生产者或服务提供者改善和发展他们的业务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Customer Review's Helpfulness Based on Feature Engineering Driven Deep Learning Model
Online consumer reviews play a pivotal role in boosting online shopping. After Covid-19, the e-commerce industry has been grown exponentially. The e-commerce industry is greatly impacted by the online customer reviews, and a lot of work has been done in this regard to identify the usefulness of reviews for purchasing online products. In this proposed work, predicting helpfulness is taken as binary classification problem to identify the helpfulness of a review in context to structural, sentimental, and voting feature sets. In this study, the authors implemented various leading ML algorithms such as KNN, LR, GNB, LDA and CNN. In comparison to these algorithms and other existing state of art methods, CNN yielded better classification results, achieving highest accuracy of 95.27%. Besides, the performance of these models was also assessed in terms of precision, recall, F1 score, etc. The results shown in this paper demonstrate that proposed model will help the producers or service providers to improve and grow their business.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信