两项阶分数阶微分方程的μ-伪几乎自同构温和解

Moumini Kéré, Gaston M. 'Guerekata
{"title":"两项阶分数阶微分方程的μ-伪几乎自同构温和解","authors":"Moumini Kéré, Gaston M. 'Guerekata","doi":"10.7153/fdc-2020-10-06","DOIUrl":null,"url":null,"abstract":". In this paper we study the existence and uniqueness of μ − pseudo almost automor- phic mild solutions for two term fractional order differential equations in a Banach space with μ − pseudo almost automorphic forcing terms. The fractional derivative is understood in the sense of Weyl. We use classical tools to obtain our results.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"μ-pseudo almost automorphic mild solutions for two terms order fractional differential equations\",\"authors\":\"Moumini Kéré, Gaston M. 'Guerekata\",\"doi\":\"10.7153/fdc-2020-10-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we study the existence and uniqueness of μ − pseudo almost automor- phic mild solutions for two term fractional order differential equations in a Banach space with μ − pseudo almost automorphic forcing terms. The fractional derivative is understood in the sense of Weyl. We use classical tools to obtain our results.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究了一类具有μ -伪几乎自同构强迫项的两项分数阶微分方程的μ -伪几乎自同构温和解的存在唯一性。分数阶导数可以理解为Weyl。我们使用经典的工具来得到我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
μ-pseudo almost automorphic mild solutions for two terms order fractional differential equations
. In this paper we study the existence and uniqueness of μ − pseudo almost automor- phic mild solutions for two term fractional order differential equations in a Banach space with μ − pseudo almost automorphic forcing terms. The fractional derivative is understood in the sense of Weyl. We use classical tools to obtain our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信