基于局部搜索策略的离散粒子群规则分类算法

Min Chen, Simone A. Ludwig
{"title":"基于局部搜索策略的离散粒子群规则分类算法","authors":"Min Chen, Simone A. Ludwig","doi":"10.1109/NaBIC.2012.6402256","DOIUrl":null,"url":null,"abstract":"Rule discovery is an important classification method that has been attracting a significant amount of researchers in recent years. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category. Besides the classical approaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete implementation with a local search strategy (DPSO-LS) was devised. The local search strategy helps to overcome local optima in order to improve the solution quality. Our DPSO-LS uses the Pittsburgh approach whereby a rule base is used to represent a `particle'. This rule base is evolved over time as to find the best possible classification model. Experimental results reveal that DPSO-LS outperforms other classification methods in most cases based on rule size, TP rates, FP rates, and precision.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Discrete Particle Swarm Optimization with local search strategy for Rule Classification\",\"authors\":\"Min Chen, Simone A. Ludwig\",\"doi\":\"10.1109/NaBIC.2012.6402256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rule discovery is an important classification method that has been attracting a significant amount of researchers in recent years. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category. Besides the classical approaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete implementation with a local search strategy (DPSO-LS) was devised. The local search strategy helps to overcome local optima in order to improve the solution quality. Our DPSO-LS uses the Pittsburgh approach whereby a rule base is used to represent a `particle'. This rule base is evolved over time as to find the best possible classification model. Experimental results reveal that DPSO-LS outperforms other classification methods in most cases based on rule size, TP rates, FP rates, and precision.\",\"PeriodicalId\":103091,\"journal\":{\"name\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2012.6402256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

规则发现是近年来备受关注的一种重要分类方法。规则发现或规则挖掘使用一组IF-THEN规则对类或类别进行分类。除了经典的方法,许多规则挖掘方法使用生物启发的算法,如进化算法和群体智能方法。提出了一种基于粒子群优化的局部搜索策略(DPSO-LS)离散实现方法。局部搜索策略有助于克服局部最优,从而提高解的质量。我们的DPSO-LS使用匹兹堡方法,即使用规则库来表示“粒子”。随着时间的推移,该规则库不断发展,以找到可能的最佳分类模型。实验结果表明,基于规则大小、TP率、FP率和精度,DPSO-LS在大多数情况下优于其他分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Particle Swarm Optimization with local search strategy for Rule Classification
Rule discovery is an important classification method that has been attracting a significant amount of researchers in recent years. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category. Besides the classical approaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete implementation with a local search strategy (DPSO-LS) was devised. The local search strategy helps to overcome local optima in order to improve the solution quality. Our DPSO-LS uses the Pittsburgh approach whereby a rule base is used to represent a `particle'. This rule base is evolved over time as to find the best possible classification model. Experimental results reveal that DPSO-LS outperforms other classification methods in most cases based on rule size, TP rates, FP rates, and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信