{"title":"基于局部搜索策略的离散粒子群规则分类算法","authors":"Min Chen, Simone A. Ludwig","doi":"10.1109/NaBIC.2012.6402256","DOIUrl":null,"url":null,"abstract":"Rule discovery is an important classification method that has been attracting a significant amount of researchers in recent years. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category. Besides the classical approaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete implementation with a local search strategy (DPSO-LS) was devised. The local search strategy helps to overcome local optima in order to improve the solution quality. Our DPSO-LS uses the Pittsburgh approach whereby a rule base is used to represent a `particle'. This rule base is evolved over time as to find the best possible classification model. Experimental results reveal that DPSO-LS outperforms other classification methods in most cases based on rule size, TP rates, FP rates, and precision.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Discrete Particle Swarm Optimization with local search strategy for Rule Classification\",\"authors\":\"Min Chen, Simone A. Ludwig\",\"doi\":\"10.1109/NaBIC.2012.6402256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rule discovery is an important classification method that has been attracting a significant amount of researchers in recent years. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category. Besides the classical approaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete implementation with a local search strategy (DPSO-LS) was devised. The local search strategy helps to overcome local optima in order to improve the solution quality. Our DPSO-LS uses the Pittsburgh approach whereby a rule base is used to represent a `particle'. This rule base is evolved over time as to find the best possible classification model. Experimental results reveal that DPSO-LS outperforms other classification methods in most cases based on rule size, TP rates, FP rates, and precision.\",\"PeriodicalId\":103091,\"journal\":{\"name\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaBIC.2012.6402256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete Particle Swarm Optimization with local search strategy for Rule Classification
Rule discovery is an important classification method that has been attracting a significant amount of researchers in recent years. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category. Besides the classical approaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete implementation with a local search strategy (DPSO-LS) was devised. The local search strategy helps to overcome local optima in order to improve the solution quality. Our DPSO-LS uses the Pittsburgh approach whereby a rule base is used to represent a `particle'. This rule base is evolved over time as to find the best possible classification model. Experimental results reveal that DPSO-LS outperforms other classification methods in most cases based on rule size, TP rates, FP rates, and precision.