学习基于模糊规则的神经网络的函数逼近

C. Higgins, R. M. Goodman
{"title":"学习基于模糊规则的神经网络的函数逼近","authors":"C. Higgins, R. M. Goodman","doi":"10.1109/IJCNN.1992.287127","DOIUrl":null,"url":null,"abstract":"The authors present a method for the induction of fuzzy logic rules to predict a numerical function from samples of the function and its dependent variables. This method uses an information-theoretic approach based on the authors' previous work with discrete-valued data (see Proc. Int. Joint. Conf. on Neur. Net., vol.1, p.875-80, 1991). The rules learned can then be used in a neural network to predict the function value based on its dependent variables. An example is shown of learning a control system function.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Learning fuzzy rule-based neural networks for function approximation\",\"authors\":\"C. Higgins, R. M. Goodman\",\"doi\":\"10.1109/IJCNN.1992.287127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a method for the induction of fuzzy logic rules to predict a numerical function from samples of the function and its dependent variables. This method uses an information-theoretic approach based on the authors' previous work with discrete-valued data (see Proc. Int. Joint. Conf. on Neur. Net., vol.1, p.875-80, 1991). The rules learned can then be used in a neural network to predict the function value based on its dependent variables. An example is shown of learning a control system function.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.287127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

作者提出了一种从函数及其因变量的样本中归纳模糊逻辑规则来预测数值函数的方法。该方法使用了一种基于作者先前对离散值数据的工作的信息论方法(参见Proc. Int)。关节。忏悔。网,第1卷,第875-80页,1991年)。学习到的规则可以用在神经网络中,根据它的因变量来预测函数值。给出了一个学习控制系统功能的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning fuzzy rule-based neural networks for function approximation
The authors present a method for the induction of fuzzy logic rules to predict a numerical function from samples of the function and its dependent variables. This method uses an information-theoretic approach based on the authors' previous work with discrete-valued data (see Proc. Int. Joint. Conf. on Neur. Net., vol.1, p.875-80, 1991). The rules learned can then be used in a neural network to predict the function value based on its dependent variables. An example is shown of learning a control system function.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信