深度学习技术在人体素描评价中的应用

Sarayut Thibhodee, Waraporn Viyanon
{"title":"深度学习技术在人体素描评价中的应用","authors":"Sarayut Thibhodee, Waraporn Viyanon","doi":"10.1145/3468784.3469852","DOIUrl":null,"url":null,"abstract":"This research is a study of the evaluation of full-body sketches and the principle of the human pose estimation using the OpenPose library, a method to detect 18 keypoints on a human structure. The dataset used in this research was drawing sketches of 22 first-year students, each of whom drew three drawings of three models. Detected keypoints are calculated to determine the angle and distance between keypoints, which provides 26 features. These features were modeled using ANN for predicting the grades of drawings classified as good, moderate, poor. The resulting keypoints are then taken to find the angles and distances of the skeleton, extracting 26 features and taking these features to create a model using ANN classification. The performance of the model was evaluated using with 56% accuracy","PeriodicalId":341589,"journal":{"name":"The 12th International Conference on Advances in Information Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Application of Evaluation of Human Sketches using Deep Learning Technique\",\"authors\":\"Sarayut Thibhodee, Waraporn Viyanon\",\"doi\":\"10.1145/3468784.3469852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is a study of the evaluation of full-body sketches and the principle of the human pose estimation using the OpenPose library, a method to detect 18 keypoints on a human structure. The dataset used in this research was drawing sketches of 22 first-year students, each of whom drew three drawings of three models. Detected keypoints are calculated to determine the angle and distance between keypoints, which provides 26 features. These features were modeled using ANN for predicting the grades of drawings classified as good, moderate, poor. The resulting keypoints are then taken to find the angles and distances of the skeleton, extracting 26 features and taking these features to create a model using ANN classification. The performance of the model was evaluated using with 56% accuracy\",\"PeriodicalId\":341589,\"journal\":{\"name\":\"The 12th International Conference on Advances in Information Technology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th International Conference on Advances in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468784.3469852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th International Conference on Advances in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468784.3469852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究是利用OpenPose库(一种检测人体结构上18个关键点的方法)对全身草图的评估和人体姿态估计原理进行研究。本研究使用的数据集是22名一年级学生的草图,每个人画三幅三个模型的草图。计算检测到的关键点,确定关键点之间的角度和距离,提供26个特征。使用人工神经网络对这些特征进行建模,以预测图纸的等级,分为好、中、差。然后利用得到的关键点来寻找骨架的角度和距离,提取26个特征,并利用这些特征创建一个使用人工神经网络分类的模型。该模型的性能评估精度为56%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of Evaluation of Human Sketches using Deep Learning Technique
This research is a study of the evaluation of full-body sketches and the principle of the human pose estimation using the OpenPose library, a method to detect 18 keypoints on a human structure. The dataset used in this research was drawing sketches of 22 first-year students, each of whom drew three drawings of three models. Detected keypoints are calculated to determine the angle and distance between keypoints, which provides 26 features. These features were modeled using ANN for predicting the grades of drawings classified as good, moderate, poor. The resulting keypoints are then taken to find the angles and distances of the skeleton, extracting 26 features and taking these features to create a model using ANN classification. The performance of the model was evaluated using with 56% accuracy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信