近红外虹膜图像的预对准

P. Drozdowski, C. Rathgeb, H. Hofbauer, J. Wagner, A. Uhl, C. Busch
{"title":"近红外虹膜图像的预对准","authors":"P. Drozdowski, C. Rathgeb, H. Hofbauer, J. Wagner, A. Uhl, C. Busch","doi":"10.1109/BTAS.2017.8272718","DOIUrl":null,"url":null,"abstract":"The necessity of biometric template alignment imposes a significant computational load and increases the probability of false positive occurrences in biometric systems. While for some modalities, automatic pre-alignment of biometric samples is utilised, this topic has not yet been explored for systems based on the iris. This paper presents a method for pre-alignment of iris images based on the positions ofautomatically detected eye corners. Existing work in the area of automatic eye corner detection has hitherto only involved visible wavelength images; for the near-infrared images, used in the vast majority of current iris recognition systems, this task is significantly more challenging and as of yet unexplored. A comparative study of two methods for solving this problem is presented in this paper. The eye corners detected by the two methods are then used for the pre-alignment and biometric performance evaluation experiments. The system utilising image pre-alignment is benchmarked against a baseline iris recognition system on the iris subset of the BioSecure database. In the benchmark, the workload associated with alignment compensation is significantly reduced, while the biometric performance remains unchanged or even improves slightly.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards pre-alignment of near-infrared iris images\",\"authors\":\"P. Drozdowski, C. Rathgeb, H. Hofbauer, J. Wagner, A. Uhl, C. Busch\",\"doi\":\"10.1109/BTAS.2017.8272718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The necessity of biometric template alignment imposes a significant computational load and increases the probability of false positive occurrences in biometric systems. While for some modalities, automatic pre-alignment of biometric samples is utilised, this topic has not yet been explored for systems based on the iris. This paper presents a method for pre-alignment of iris images based on the positions ofautomatically detected eye corners. Existing work in the area of automatic eye corner detection has hitherto only involved visible wavelength images; for the near-infrared images, used in the vast majority of current iris recognition systems, this task is significantly more challenging and as of yet unexplored. A comparative study of two methods for solving this problem is presented in this paper. The eye corners detected by the two methods are then used for the pre-alignment and biometric performance evaluation experiments. The system utilising image pre-alignment is benchmarked against a baseline iris recognition system on the iris subset of the BioSecure database. In the benchmark, the workload associated with alignment compensation is significantly reduced, while the biometric performance remains unchanged or even improves slightly.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物识别模板对齐的必要性施加了显著的计算负荷,并增加了假阳性发生在生物识别系统的概率。虽然对于某些模式,生物特征样本的自动预校准被利用,但这个主题尚未被探索用于基于虹膜的系统。本文提出了一种基于自动检测的眼角位置对虹膜图像进行预对准的方法。目前在自动眼角检测领域的工作只涉及可见光波长图像;对于目前绝大多数虹膜识别系统中使用的近红外图像,这项任务更具挑战性,而且尚未被探索。本文对解决这一问题的两种方法进行了比较研究。然后将两种方法检测到的眼角用于预对准和生物特征性能评估实验。利用图像预校准的系统在BioSecure数据库的虹膜子集上对基线虹膜识别系统进行基准测试。在基准测试中,与校准补偿相关的工作量显著减少,而生物识别性能保持不变甚至略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards pre-alignment of near-infrared iris images
The necessity of biometric template alignment imposes a significant computational load and increases the probability of false positive occurrences in biometric systems. While for some modalities, automatic pre-alignment of biometric samples is utilised, this topic has not yet been explored for systems based on the iris. This paper presents a method for pre-alignment of iris images based on the positions ofautomatically detected eye corners. Existing work in the area of automatic eye corner detection has hitherto only involved visible wavelength images; for the near-infrared images, used in the vast majority of current iris recognition systems, this task is significantly more challenging and as of yet unexplored. A comparative study of two methods for solving this problem is presented in this paper. The eye corners detected by the two methods are then used for the pre-alignment and biometric performance evaluation experiments. The system utilising image pre-alignment is benchmarked against a baseline iris recognition system on the iris subset of the BioSecure database. In the benchmark, the workload associated with alignment compensation is significantly reduced, while the biometric performance remains unchanged or even improves slightly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信