Md. Saiful Islam, W. Rahayu, Chengfei Liu, Tarique Anwar, Bela Stantic
{"title":"不确定逆向天际线对产品影响的计算","authors":"Md. Saiful Islam, W. Rahayu, Chengfei Liu, Tarique Anwar, Bela Stantic","doi":"10.1145/3085504.3085508","DOIUrl":null,"url":null,"abstract":"Understanding the influence of a product is crucially important for making informed business decisions. This paper introduces a new type of skyline queries, called uncertain reverse skyline, for measuring the influence of a probabilistic product in uncertain data settings. More specifically, given a dataset of probabilistic products P and a set of customers C, an uncertain reverse skyline of a probabilistic product q retrieves all customers c ∈ C which include q as one of their preferred products. We present efficient pruning ideas and techniques for processing the uncertain reverse skyline query of a probabilistic product using R-Tree data index. We also present an efficient parallel approach to compute the uncertain reverse skyline and influence score of a probabilistic product. Our approach significantly outperforms the baseline approach derived from the existing literature. The efficiency of our approach is demonstrated by conducting experiments with both real and synthetic datasets.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computing Influence of a Product through Uncertain Reverse Skyline\",\"authors\":\"Md. Saiful Islam, W. Rahayu, Chengfei Liu, Tarique Anwar, Bela Stantic\",\"doi\":\"10.1145/3085504.3085508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the influence of a product is crucially important for making informed business decisions. This paper introduces a new type of skyline queries, called uncertain reverse skyline, for measuring the influence of a probabilistic product in uncertain data settings. More specifically, given a dataset of probabilistic products P and a set of customers C, an uncertain reverse skyline of a probabilistic product q retrieves all customers c ∈ C which include q as one of their preferred products. We present efficient pruning ideas and techniques for processing the uncertain reverse skyline query of a probabilistic product using R-Tree data index. We also present an efficient parallel approach to compute the uncertain reverse skyline and influence score of a probabilistic product. Our approach significantly outperforms the baseline approach derived from the existing literature. The efficiency of our approach is demonstrated by conducting experiments with both real and synthetic datasets.\",\"PeriodicalId\":431308,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3085504.3085508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3085508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing Influence of a Product through Uncertain Reverse Skyline
Understanding the influence of a product is crucially important for making informed business decisions. This paper introduces a new type of skyline queries, called uncertain reverse skyline, for measuring the influence of a probabilistic product in uncertain data settings. More specifically, given a dataset of probabilistic products P and a set of customers C, an uncertain reverse skyline of a probabilistic product q retrieves all customers c ∈ C which include q as one of their preferred products. We present efficient pruning ideas and techniques for processing the uncertain reverse skyline query of a probabilistic product using R-Tree data index. We also present an efficient parallel approach to compute the uncertain reverse skyline and influence score of a probabilistic product. Our approach significantly outperforms the baseline approach derived from the existing literature. The efficiency of our approach is demonstrated by conducting experiments with both real and synthetic datasets.