恶性组合的复杂性

Peter Bro Miltersen
{"title":"恶性组合的复杂性","authors":"Peter Bro Miltersen","doi":"10.1109/SCT.1991.160257","DOIUrl":null,"url":null,"abstract":"The author analyzes the concept of malignness, which is the property of probability ensembles making the average case running time equal to the worst-case running time for a class of algorithms. He derives lower and upper bounds on the complexity of malign ensembles, which are tight for exponential time algorithms and which show that no polynomial time computable malign ensemble exists for the class of polynomial time algorithms. Furthermore, he shows that for no class of superlinear algorithms does a polynomial time computable malign ensemble exist, unless every language in P has an expected polynomial time constructor.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"The complexity of malign ensembles\",\"authors\":\"Peter Bro Miltersen\",\"doi\":\"10.1109/SCT.1991.160257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author analyzes the concept of malignness, which is the property of probability ensembles making the average case running time equal to the worst-case running time for a class of algorithms. He derives lower and upper bounds on the complexity of malign ensembles, which are tight for exponential time algorithms and which show that no polynomial time computable malign ensemble exists for the class of polynomial time algorithms. Furthermore, he shows that for no class of superlinear algorithms does a polynomial time computable malign ensemble exist, unless every language in P has an expected polynomial time constructor.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

作者分析了恶性的概念,即概率集合的性质,使得一类算法的平均情况运行时间等于最坏情况运行时间。他导出了恶性集合复杂度的下界和上界,这对指数时间算法来说是紧的,并证明了多项式时间算法不存在多项式时间可计算的恶性集合。此外,他证明了对于任何一类超线性算法都不存在多项式时间可计算的恶性集合,除非P中的每种语言都有一个预期的多项式时间构造函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of malign ensembles
The author analyzes the concept of malignness, which is the property of probability ensembles making the average case running time equal to the worst-case running time for a class of algorithms. He derives lower and upper bounds on the complexity of malign ensembles, which are tight for exponential time algorithms and which show that no polynomial time computable malign ensemble exists for the class of polynomial time algorithms. Furthermore, he shows that for no class of superlinear algorithms does a polynomial time computable malign ensemble exist, unless every language in P has an expected polynomial time constructor.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信