高级神经网络处理器的物理合成

Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, Bei Yu
{"title":"高级神经网络处理器的物理合成","authors":"Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, Bei Yu","doi":"10.1145/3394885.3431625","DOIUrl":null,"url":null,"abstract":"The remarkable breakthroughs in deep learning have led to a dramatic thirst for computational resources to tackle interesting real-world problems. Various neural network processors have been proposed for the purpose, yet, far fewer discussions have been made on the physical synthesis for such specialized processors, especially in advanced technology nodes. In this paper, we review several physical synthesis techniques for advanced neural network processors. We especially argue that datapath design is an essential methodology in the above procedures due to the organized computational graph of neural networks. As a case study, we investigate a wafer-scale deep learning accelerator placement problem in detail.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Physical Synthesis for Advanced Neural Network Processors\",\"authors\":\"Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, Bei Yu\",\"doi\":\"10.1145/3394885.3431625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remarkable breakthroughs in deep learning have led to a dramatic thirst for computational resources to tackle interesting real-world problems. Various neural network processors have been proposed for the purpose, yet, far fewer discussions have been made on the physical synthesis for such specialized processors, especially in advanced technology nodes. In this paper, we review several physical synthesis techniques for advanced neural network processors. We especially argue that datapath design is an essential methodology in the above procedures due to the organized computational graph of neural networks. As a case study, we investigate a wafer-scale deep learning accelerator placement problem in detail.\",\"PeriodicalId\":186307,\"journal\":{\"name\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3394885.3431625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

深度学习的显著突破导致了对计算资源的巨大渴求,以解决有趣的现实问题。各种各样的神经网络处理器已经被提出,然而,对这种专门处理器的物理合成的讨论却很少,特别是在先进的技术节点上。本文综述了先进神经网络处理器的几种物理合成技术。我们特别指出,由于神经网络的组织计算图,数据路径设计是上述过程中必不可少的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical Synthesis for Advanced Neural Network Processors
The remarkable breakthroughs in deep learning have led to a dramatic thirst for computational resources to tackle interesting real-world problems. Various neural network processors have been proposed for the purpose, yet, far fewer discussions have been made on the physical synthesis for such specialized processors, especially in advanced technology nodes. In this paper, we review several physical synthesis techniques for advanced neural network processors. We especially argue that datapath design is an essential methodology in the above procedures due to the organized computational graph of neural networks. As a case study, we investigate a wafer-scale deep learning accelerator placement problem in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信