基于编码方法的Gibbs-Markov场纹理模型参数估计

Jorge Martinez, Silvina Pistonesi, M. C. Maciel, A. G. Flesia
{"title":"基于编码方法的Gibbs-Markov场纹理模型参数估计","authors":"Jorge Martinez, Silvina Pistonesi, M. C. Maciel, A. G. Flesia","doi":"10.1109/SSP.2018.8450826","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach of the Conditional Least Square (CLS) estimator based on a coding scheme, for estimating the parameter vector associated with an Auto-Binomial model. This method provides a parallel solver for the estimation process. In order to illustrate the performance of the proposed approach, we carried out a Monte Carlo study and a real application for landscape classification using a high-resolution Pléiades-1A satellite image. Experimental results demonstrated the effectiveness of our estimation approach as well as CLS method, but in a lower runtime.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1486 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimation in a Gibbs-Markov Field Texture Model Based on a Coding Approach\",\"authors\":\"Jorge Martinez, Silvina Pistonesi, M. C. Maciel, A. G. Flesia\",\"doi\":\"10.1109/SSP.2018.8450826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach of the Conditional Least Square (CLS) estimator based on a coding scheme, for estimating the parameter vector associated with an Auto-Binomial model. This method provides a parallel solver for the estimation process. In order to illustrate the performance of the proposed approach, we carried out a Monte Carlo study and a real application for landscape classification using a high-resolution Pléiades-1A satellite image. Experimental results demonstrated the effectiveness of our estimation approach as well as CLS method, but in a lower runtime.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"1486 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于编码方案的条件最小二乘估计方法,用于估计与自二项模型相关的参数向量。该方法为估计过程提供了一个并行求解器。为了说明所提出方法的性能,我们进行了蒙特卡洛研究,并使用高分辨率plimades - 1a卫星图像进行了景观分类的实际应用。实验结果表明,该方法与CLS方法一样有效,但运行时间较短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation in a Gibbs-Markov Field Texture Model Based on a Coding Approach
In this paper, we present a novel approach of the Conditional Least Square (CLS) estimator based on a coding scheme, for estimating the parameter vector associated with an Auto-Binomial model. This method provides a parallel solver for the estimation process. In order to illustrate the performance of the proposed approach, we carried out a Monte Carlo study and a real application for landscape classification using a high-resolution Pléiades-1A satellite image. Experimental results demonstrated the effectiveness of our estimation approach as well as CLS method, but in a lower runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信