着眼于物理的可解释机器学习:通过混合子空间建模分析干燥木材的高光谱Vis/NIR“视频”

NIR News Pub Date : 2021-11-25 DOI:10.1177/09603360211062706
H. Martens
{"title":"着眼于物理的可解释机器学习:通过混合子空间建模分析干燥木材的高光谱Vis/NIR“视频”","authors":"H. Martens","doi":"10.1177/09603360211062706","DOIUrl":null,"url":null,"abstract":"Chemometric multivariate analysis based on low-dimensional linear and bilinear data modelling is presented as a fast and interpretable alternative to more fancy “AI” for practical use of Big Data streams from hyperspectral “video” cameras. The purpose of the present illustration is to find, quantify and understand the various known and unknown factors affecting the process of drying moist wood. It involves an “interpretable machine learning” that analyses more than 350 million absorbance spectra, requiring 418 GB of data storage, without the use of black box operations. The 159-channel high-resolution hyperspectral wood “video” in the 500–1005 nm range was reduced to five known and four unknown variation components of physical and chemical nature, each with its spectral, spatial and temporal parameters quantified. Together, this 9-dimensional linear model explained more than 99.98% of the total input variance.","PeriodicalId":113081,"journal":{"name":"NIR News","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interpretable machine learning with an eye for the physics: Hyperspectral Vis/NIR “video” of drying wood analyzed by hybrid subspace modeling\",\"authors\":\"H. Martens\",\"doi\":\"10.1177/09603360211062706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemometric multivariate analysis based on low-dimensional linear and bilinear data modelling is presented as a fast and interpretable alternative to more fancy “AI” for practical use of Big Data streams from hyperspectral “video” cameras. The purpose of the present illustration is to find, quantify and understand the various known and unknown factors affecting the process of drying moist wood. It involves an “interpretable machine learning” that analyses more than 350 million absorbance spectra, requiring 418 GB of data storage, without the use of black box operations. The 159-channel high-resolution hyperspectral wood “video” in the 500–1005 nm range was reduced to five known and four unknown variation components of physical and chemical nature, each with its spectral, spatial and temporal parameters quantified. Together, this 9-dimensional linear model explained more than 99.98% of the total input variance.\",\"PeriodicalId\":113081,\"journal\":{\"name\":\"NIR News\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NIR News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09603360211062706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NIR News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603360211062706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于低维线性和双线性数据建模的化学计量多元分析被认为是一种快速和可解释的替代方案,可以替代更复杂的“人工智能”,用于高光谱“视频”摄像机的大数据流的实际使用。本插图的目的是发现、量化和理解影响潮湿木材干燥过程的各种已知和未知因素。它涉及一种“可解释的机器学习”,可以分析超过3.5亿个吸光度光谱,需要418 GB的数据存储,而无需使用黑匣子操作。将500 - 1005nm范围内的159通道高光谱木材“视频”简化为5个已知和4个未知的物理和化学性质变化分量,并对其光谱、空间和时间参数进行量化。总之,这个9维线性模型解释了超过99.98%的总输入方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable machine learning with an eye for the physics: Hyperspectral Vis/NIR “video” of drying wood analyzed by hybrid subspace modeling
Chemometric multivariate analysis based on low-dimensional linear and bilinear data modelling is presented as a fast and interpretable alternative to more fancy “AI” for practical use of Big Data streams from hyperspectral “video” cameras. The purpose of the present illustration is to find, quantify and understand the various known and unknown factors affecting the process of drying moist wood. It involves an “interpretable machine learning” that analyses more than 350 million absorbance spectra, requiring 418 GB of data storage, without the use of black box operations. The 159-channel high-resolution hyperspectral wood “video” in the 500–1005 nm range was reduced to five known and four unknown variation components of physical and chemical nature, each with its spectral, spatial and temporal parameters quantified. Together, this 9-dimensional linear model explained more than 99.98% of the total input variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信