当算法预测使用人类生成的数据:一种偏见感知的乳腺癌诊断分类算法

M. Ahsen, M. Ayvaci, Srinivasan Raghunathan
{"title":"当算法预测使用人类生成的数据:一种偏见感知的乳腺癌诊断分类算法","authors":"M. Ahsen, M. Ayvaci, Srinivasan Raghunathan","doi":"10.2139/ssrn.3087467","DOIUrl":null,"url":null,"abstract":"When algorithms use data generated by human beings, they inherit the errors stemming from human biases, which likely diminishes their performance. We examine the design and value of a bias-aware li...","PeriodicalId":210701,"journal":{"name":"Decision-Making in Public Policy & the Social Good eJournal","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis\",\"authors\":\"M. Ahsen, M. Ayvaci, Srinivasan Raghunathan\",\"doi\":\"10.2139/ssrn.3087467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When algorithms use data generated by human beings, they inherit the errors stemming from human biases, which likely diminishes their performance. We examine the design and value of a bias-aware li...\",\"PeriodicalId\":210701,\"journal\":{\"name\":\"Decision-Making in Public Policy & the Social Good eJournal\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision-Making in Public Policy & the Social Good eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3087467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision-Making in Public Policy & the Social Good eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3087467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

当算法使用由人类产生的数据时,它们会继承由人类偏见产生的错误,这可能会降低它们的性能。我们检查了一个有偏见意识的li的设计和价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis
When algorithms use data generated by human beings, they inherit the errors stemming from human biases, which likely diminishes their performance. We examine the design and value of a bias-aware li...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信