优化并行Java流

Matteo Basso, F. Schiavio, Andrea Rosà, Walter Binder
{"title":"优化并行Java流","authors":"Matteo Basso, F. Schiavio, Andrea Rosà, Walter Binder","doi":"10.1109/ICECCS54210.2022.00012","DOIUrl":null,"url":null,"abstract":"The Java Stream API increases developer produc-tivity and greatly simplifies exploiting parallel computation by providing a high-level abstraction on top of complex data pro-cessing, parallelization, and synchronization algorithms. However, the usage of the Java Stream API often incurs significant runtime overhead. Method inlining and the automated translation of code using the Java Stream API into imperative code using loops can reduce such overhead; however, existing approaches and tools are applicable only to sequential stream pipelines, leaving the optimization of parallel streams an open issue. We bridge this gap by presenting a novel method to exploit high-level static analysis to characterize stream pipelines, detect parallel streams, and apply transformations removing the abstraction overhead. We evaluate our method on a set of benchmarks, showing that our approach significantly reduces execution time and memory allocation.","PeriodicalId":344493,"journal":{"name":"2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimizing Parallel Java Streams\",\"authors\":\"Matteo Basso, F. Schiavio, Andrea Rosà, Walter Binder\",\"doi\":\"10.1109/ICECCS54210.2022.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Java Stream API increases developer produc-tivity and greatly simplifies exploiting parallel computation by providing a high-level abstraction on top of complex data pro-cessing, parallelization, and synchronization algorithms. However, the usage of the Java Stream API often incurs significant runtime overhead. Method inlining and the automated translation of code using the Java Stream API into imperative code using loops can reduce such overhead; however, existing approaches and tools are applicable only to sequential stream pipelines, leaving the optimization of parallel streams an open issue. We bridge this gap by presenting a novel method to exploit high-level static analysis to characterize stream pipelines, detect parallel streams, and apply transformations removing the abstraction overhead. We evaluate our method on a set of benchmarks, showing that our approach significantly reduces execution time and memory allocation.\",\"PeriodicalId\":344493,\"journal\":{\"name\":\"2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCS54210.2022.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCS54210.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Java Stream API通过在复杂的数据处理、并行化和同步算法之上提供高级抽象,提高了开发人员的工作效率,并极大地简化了并行计算的开发。然而,Java流API的使用通常会导致显著的运行时开销。方法内联和使用Java流API将代码自动转换为使用循环的命令式代码可以减少这种开销;然而,现有的方法和工具只适用于顺序流管道,使并行流的优化成为一个开放的问题。我们提出了一种新颖的方法来利用高级静态分析来描述流管道,检测并行流,并应用转换来消除抽象开销,从而弥合了这一差距。我们在一组基准测试中评估了我们的方法,结果表明我们的方法显著减少了执行时间和内存分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Parallel Java Streams
The Java Stream API increases developer produc-tivity and greatly simplifies exploiting parallel computation by providing a high-level abstraction on top of complex data pro-cessing, parallelization, and synchronization algorithms. However, the usage of the Java Stream API often incurs significant runtime overhead. Method inlining and the automated translation of code using the Java Stream API into imperative code using loops can reduce such overhead; however, existing approaches and tools are applicable only to sequential stream pipelines, leaving the optimization of parallel streams an open issue. We bridge this gap by presenting a novel method to exploit high-level static analysis to characterize stream pipelines, detect parallel streams, and apply transformations removing the abstraction overhead. We evaluate our method on a set of benchmarks, showing that our approach significantly reduces execution time and memory allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信