{"title":"UD-MIMO:用于无线局域网的上行分布式MIMO","authors":"Hossein Pirayesh, Pedram Kheirkhah Sangdeh, Qiben Yan, Huacheng Zeng","doi":"10.1109/SECON52354.2021.9491622","DOIUrl":null,"url":null,"abstract":"Wireless local area networks (WLANs) are a key component of the telecommunications infrastructure in our society. While many solutions have been produced to improve their downlink throughput, the techniques for enhancing their uplink throughput remain limited. The stagnation can be attributed to the lack of fine-grained inter-node synchronization due to the hardware limitation of most devices. In this paper, we present an uplink distributed multiple-input-and-multiple-output scheme (termed UD-MIMO) for WLANs to enable concurrent uplink transmission in the absence of fine-grained inter-node synchronization. The enabling technique behind UD-MIMO is a practical solution to decoding uplink packets from asynchronous users. UD-MIMO makes it possible for WLANs to significantly improve their uplink throughput while not requiring tight internode synchronization. We have built a prototype of UD-MIMO on a wireless testbed and demonstrate its compatibility with commercial off-the-shelf Atheros 802.11 client devices (with modified Linux driver). Our experimental results show that, for a WLAN with 8 APs in a conference room, UD-MIMO offers 3.4× throughput compared to interference-avoidance approach.","PeriodicalId":120945,"journal":{"name":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UD-MIMO: Uplink Distributed MIMO for Wireless LANs\",\"authors\":\"Hossein Pirayesh, Pedram Kheirkhah Sangdeh, Qiben Yan, Huacheng Zeng\",\"doi\":\"10.1109/SECON52354.2021.9491622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless local area networks (WLANs) are a key component of the telecommunications infrastructure in our society. While many solutions have been produced to improve their downlink throughput, the techniques for enhancing their uplink throughput remain limited. The stagnation can be attributed to the lack of fine-grained inter-node synchronization due to the hardware limitation of most devices. In this paper, we present an uplink distributed multiple-input-and-multiple-output scheme (termed UD-MIMO) for WLANs to enable concurrent uplink transmission in the absence of fine-grained inter-node synchronization. The enabling technique behind UD-MIMO is a practical solution to decoding uplink packets from asynchronous users. UD-MIMO makes it possible for WLANs to significantly improve their uplink throughput while not requiring tight internode synchronization. We have built a prototype of UD-MIMO on a wireless testbed and demonstrate its compatibility with commercial off-the-shelf Atheros 802.11 client devices (with modified Linux driver). Our experimental results show that, for a WLAN with 8 APs in a conference room, UD-MIMO offers 3.4× throughput compared to interference-avoidance approach.\",\"PeriodicalId\":120945,\"journal\":{\"name\":\"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON52354.2021.9491622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON52354.2021.9491622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UD-MIMO: Uplink Distributed MIMO for Wireless LANs
Wireless local area networks (WLANs) are a key component of the telecommunications infrastructure in our society. While many solutions have been produced to improve their downlink throughput, the techniques for enhancing their uplink throughput remain limited. The stagnation can be attributed to the lack of fine-grained inter-node synchronization due to the hardware limitation of most devices. In this paper, we present an uplink distributed multiple-input-and-multiple-output scheme (termed UD-MIMO) for WLANs to enable concurrent uplink transmission in the absence of fine-grained inter-node synchronization. The enabling technique behind UD-MIMO is a practical solution to decoding uplink packets from asynchronous users. UD-MIMO makes it possible for WLANs to significantly improve their uplink throughput while not requiring tight internode synchronization. We have built a prototype of UD-MIMO on a wireless testbed and demonstrate its compatibility with commercial off-the-shelf Atheros 802.11 client devices (with modified Linux driver). Our experimental results show that, for a WLAN with 8 APs in a conference room, UD-MIMO offers 3.4× throughput compared to interference-avoidance approach.