有效文本分类的降维技术分析

K. Swarnalatha, N. V. Kumar, D. S. Guru, B. S. Anami
{"title":"有效文本分类的降维技术分析","authors":"K. Swarnalatha, N. V. Kumar, D. S. Guru, B. S. Anami","doi":"10.1109/CONIT51480.2021.9498287","DOIUrl":null,"url":null,"abstract":"In this paper, the different dimensionality reduction techniques are presented for effective text classification. The feature selection technique and feature transformation fallowed by feature selection techniques are recommended to reduce the dimension of the features. For more compactness of data, the symbolic interval data type is recommended. The techniques are evaluated using SVM classifier and Symbolic classifier on standard benchmark datasets viz., Reuters-21578 and TDT2. The effectiveness of the techniques is verified with the performance F-1 score measure. The dimensionality reduction techniques which perform better are recommended when compared to the others.","PeriodicalId":426131,"journal":{"name":"2021 International Conference on Intelligent Technologies (CONIT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Dimensionality Reduction Techniques for Effective Text Classification\",\"authors\":\"K. Swarnalatha, N. V. Kumar, D. S. Guru, B. S. Anami\",\"doi\":\"10.1109/CONIT51480.2021.9498287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the different dimensionality reduction techniques are presented for effective text classification. The feature selection technique and feature transformation fallowed by feature selection techniques are recommended to reduce the dimension of the features. For more compactness of data, the symbolic interval data type is recommended. The techniques are evaluated using SVM classifier and Symbolic classifier on standard benchmark datasets viz., Reuters-21578 and TDT2. The effectiveness of the techniques is verified with the performance F-1 score measure. The dimensionality reduction techniques which perform better are recommended when compared to the others.\",\"PeriodicalId\":426131,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIT51480.2021.9498287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT51480.2021.9498287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了不同的降维技术来实现有效的文本分类。建议采用特征选择技术和特征选择技术之后的特征变换来降低特征的维数。为了使数据更加紧凑,建议使用符号间隔数据类型。使用SVM分类器和Symbolic分类器在标准基准数据集(即Reuters-21578和TDT2)上对这些技术进行了评估。通过性能F-1评分来验证技术的有效性。与其他降维技术相比,推荐性能更好的降维技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Dimensionality Reduction Techniques for Effective Text Classification
In this paper, the different dimensionality reduction techniques are presented for effective text classification. The feature selection technique and feature transformation fallowed by feature selection techniques are recommended to reduce the dimension of the features. For more compactness of data, the symbolic interval data type is recommended. The techniques are evaluated using SVM classifier and Symbolic classifier on standard benchmark datasets viz., Reuters-21578 and TDT2. The effectiveness of the techniques is verified with the performance F-1 score measure. The dimensionality reduction techniques which perform better are recommended when compared to the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信