根据等距网格方程构造一组平坦曲线

V. Nesvidomin, S. Pylypaka, A. Nesvidomina
{"title":"根据等距网格方程构造一组平坦曲线","authors":"V. Nesvidomin, S. Pylypaka, A. Nesvidomina","doi":"10.33842/22195203/2021/22/111/117","DOIUrl":null,"url":null,"abstract":"Abstract. The article reveals an analytical description of the formation of families of orthogonal flat curved lines in the implicit form based on the analysis of the parametric equation of a flat isometric grid constructed by separating the real and imaginary parts of the function of a complex variable. This problem is due to the fact that flat isometric grids, as two families of orthogonal coordinate lines with square cells, are used in conformal mappings, for example, when drawing images on curved surfaces with the least distortion. At the same time, families of flat parallel lines are widely used in geometric modeling of heat transfer, electric fields, fluid flow, etc. There is a connection between these geometric images, which is explained by specific examples. Analytical calculations of deriving the parametric equation of an isometric grid are quite time-consuming, so they are performed in the environment of symbolic algebra Maple. For this purpose, the corresponding software of the interactive model of derivation of parametric equations of isometric grids for any initial function of a complex variable with the subsequent separation of its real and imaginary parts was created. It was found that the values of the abscissa and ordinates of the parametric equation of a flat isometric grid can be represented as explicit surface equations. For integer values of the power of the exponential function of the complex variable, the values of the abscissa and the ordinate will be represented by algebraic surfaces in the explicit form. The projections of the cross sections of the abscissa and ordinate surfaces by horizontal cutting planes on the horizontal plane form two families of curved lines, the equations of which can be obtained only implicitly. By the example of the quadratic function of a complex variable, it is proved that these families of lines are mutually perpendicular. The practical application of building a family of lines for geometric modeling of fluid flow lines that flow around the barrier in the form of a semicircle is shown.","PeriodicalId":188754,"journal":{"name":"Modern problems of modeling","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONSTRUCTION OF A FAMILY OF FLAT CURVES ACCORDING TO THE EQUATIONS OF ISOMETRIC GRIDS\",\"authors\":\"V. Nesvidomin, S. Pylypaka, A. Nesvidomina\",\"doi\":\"10.33842/22195203/2021/22/111/117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The article reveals an analytical description of the formation of families of orthogonal flat curved lines in the implicit form based on the analysis of the parametric equation of a flat isometric grid constructed by separating the real and imaginary parts of the function of a complex variable. This problem is due to the fact that flat isometric grids, as two families of orthogonal coordinate lines with square cells, are used in conformal mappings, for example, when drawing images on curved surfaces with the least distortion. At the same time, families of flat parallel lines are widely used in geometric modeling of heat transfer, electric fields, fluid flow, etc. There is a connection between these geometric images, which is explained by specific examples. Analytical calculations of deriving the parametric equation of an isometric grid are quite time-consuming, so they are performed in the environment of symbolic algebra Maple. For this purpose, the corresponding software of the interactive model of derivation of parametric equations of isometric grids for any initial function of a complex variable with the subsequent separation of its real and imaginary parts was created. It was found that the values of the abscissa and ordinates of the parametric equation of a flat isometric grid can be represented as explicit surface equations. For integer values of the power of the exponential function of the complex variable, the values of the abscissa and the ordinate will be represented by algebraic surfaces in the explicit form. The projections of the cross sections of the abscissa and ordinate surfaces by horizontal cutting planes on the horizontal plane form two families of curved lines, the equations of which can be obtained only implicitly. By the example of the quadratic function of a complex variable, it is proved that these families of lines are mutually perpendicular. The practical application of building a family of lines for geometric modeling of fluid flow lines that flow around the barrier in the form of a semicircle is shown.\",\"PeriodicalId\":188754,\"journal\":{\"name\":\"Modern problems of modeling\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern problems of modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33842/22195203/2021/22/111/117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern problems of modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33842/22195203/2021/22/111/117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文在分析复变函数实部与虚部分离构成的平面等距网格参数方程的基础上,给出了平面正交曲线族隐式形成的解析描述。这个问题是由于这样一个事实,即平面等距网格,作为两个具有正方形单元格的正交坐标线族,用于保角映射,例如,当以最小的失真在曲面上绘制图像时。同时,平面平行线族也广泛应用于传热、电场、流体流动等几何建模中。这些几何图像之间存在联系,并通过具体的例子加以解释。等距网格参数方程的解析计算非常耗时,因此在符号代数Maple环境下进行。为此,建立了复变量任意初始函数与实虚部分离的等距网格参数方程推导交互模型软件。发现了平面等距网格参数方程的横坐标值和纵坐标值可以用显式曲面方程表示。对于复变量的指数函数幂的整数值,横坐标和纵坐标的值将用显式的代数曲面表示。横切面和纵切面的横截面经水平切面在水平面上的投影形成两族曲线,其方程只能隐式求得。以复变二次函数为例,证明了这两组直线是相互垂直的。本文给出了建立一组线的实际应用,用于围绕屏障以半圆形式流动的流体流动线的几何建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONSTRUCTION OF A FAMILY OF FLAT CURVES ACCORDING TO THE EQUATIONS OF ISOMETRIC GRIDS
Abstract. The article reveals an analytical description of the formation of families of orthogonal flat curved lines in the implicit form based on the analysis of the parametric equation of a flat isometric grid constructed by separating the real and imaginary parts of the function of a complex variable. This problem is due to the fact that flat isometric grids, as two families of orthogonal coordinate lines with square cells, are used in conformal mappings, for example, when drawing images on curved surfaces with the least distortion. At the same time, families of flat parallel lines are widely used in geometric modeling of heat transfer, electric fields, fluid flow, etc. There is a connection between these geometric images, which is explained by specific examples. Analytical calculations of deriving the parametric equation of an isometric grid are quite time-consuming, so they are performed in the environment of symbolic algebra Maple. For this purpose, the corresponding software of the interactive model of derivation of parametric equations of isometric grids for any initial function of a complex variable with the subsequent separation of its real and imaginary parts was created. It was found that the values of the abscissa and ordinates of the parametric equation of a flat isometric grid can be represented as explicit surface equations. For integer values of the power of the exponential function of the complex variable, the values of the abscissa and the ordinate will be represented by algebraic surfaces in the explicit form. The projections of the cross sections of the abscissa and ordinate surfaces by horizontal cutting planes on the horizontal plane form two families of curved lines, the equations of which can be obtained only implicitly. By the example of the quadratic function of a complex variable, it is proved that these families of lines are mutually perpendicular. The practical application of building a family of lines for geometric modeling of fluid flow lines that flow around the barrier in the form of a semicircle is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信