{"title":"超稳定光纤分配系统的应用","authors":"L. Primas, R. Logan, G. Lutes","doi":"10.1109/FREQ.1989.68866","DOIUrl":null,"url":null,"abstract":"Present and future applications of fiber-optic frequency distribution systems are discussed and it is noted that for applications requiring distribution stability greater than one part in 10/sup 15/ at 1000 s averaging times, a stabilized fiber optic link is the only choice presently available. A stabilized fiber optic system that can improve distribution stability by more than 100 times is also described. It uses a cable delay compensator.<<ETX>>","PeriodicalId":294361,"journal":{"name":"Proceedings of the 43rd Annual Symposium on Frequency Control","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Applications of ultra-stable fiber optic distribution systems\",\"authors\":\"L. Primas, R. Logan, G. Lutes\",\"doi\":\"10.1109/FREQ.1989.68866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present and future applications of fiber-optic frequency distribution systems are discussed and it is noted that for applications requiring distribution stability greater than one part in 10/sup 15/ at 1000 s averaging times, a stabilized fiber optic link is the only choice presently available. A stabilized fiber optic system that can improve distribution stability by more than 100 times is also described. It uses a cable delay compensator.<<ETX>>\",\"PeriodicalId\":294361,\"journal\":{\"name\":\"Proceedings of the 43rd Annual Symposium on Frequency Control\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd Annual Symposium on Frequency Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.1989.68866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd Annual Symposium on Frequency Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.1989.68866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applications of ultra-stable fiber optic distribution systems
Present and future applications of fiber-optic frequency distribution systems are discussed and it is noted that for applications requiring distribution stability greater than one part in 10/sup 15/ at 1000 s averaging times, a stabilized fiber optic link is the only choice presently available. A stabilized fiber optic system that can improve distribution stability by more than 100 times is also described. It uses a cable delay compensator.<>