使用多语言瓶颈特征的两两学习,用于低资源按例查询的口语术语检测

Yougen Yuan, C. Leung, Lei Xie, Hongjie Chen, B. Ma, Haizhou Li
{"title":"使用多语言瓶颈特征的两两学习,用于低资源按例查询的口语术语检测","authors":"Yougen Yuan, C. Leung, Lei Xie, Hongjie Chen, B. Ma, Haizhou Li","doi":"10.1109/ICASSP.2017.7953237","DOIUrl":null,"url":null,"abstract":"We propose to use a feature representation obtained by pairwise learning in a low-resource language for query-by-example spoken term detection (QbE-STD). We assume that word pairs identified by humans are available in the low-resource target language. The word pairs are parameterized by a multi-lingual bottleneck feature (BNF) extractor that is trained using transcribed data in high-resource languages. The multi-lingual BNFs of the word pairs are used as an initial feature representation to train an autoencoder (AE). We extract features from an internal hidden layer of the pairwise trained AE to perform acoustic pattern matching for QbE-STD. Our experiments on the TIMIT and Switchboard corpora show that the pairwise learning brings 7.61% and 8.75% relative improvements in mean average precision (MAP) respectively over the initial feature representation.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Pairwise learning using multi-lingual bottleneck features for low-resource query-by-example spoken term detection\",\"authors\":\"Yougen Yuan, C. Leung, Lei Xie, Hongjie Chen, B. Ma, Haizhou Li\",\"doi\":\"10.1109/ICASSP.2017.7953237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to use a feature representation obtained by pairwise learning in a low-resource language for query-by-example spoken term detection (QbE-STD). We assume that word pairs identified by humans are available in the low-resource target language. The word pairs are parameterized by a multi-lingual bottleneck feature (BNF) extractor that is trained using transcribed data in high-resource languages. The multi-lingual BNFs of the word pairs are used as an initial feature representation to train an autoencoder (AE). We extract features from an internal hidden layer of the pairwise trained AE to perform acoustic pattern matching for QbE-STD. Our experiments on the TIMIT and Switchboard corpora show that the pairwise learning brings 7.61% and 8.75% relative improvements in mean average precision (MAP) respectively over the initial feature representation.\",\"PeriodicalId\":118243,\"journal\":{\"name\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7953237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7953237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

我们建议在低资源语言中使用通过两两学习获得的特征表示来进行按例查询的口语术语检测(QbE-STD)。我们假设人类识别的词对在低资源的目标语言中是可用的。单词对由多语言瓶颈特征(BNF)提取器参数化,该提取器使用高资源语言的转录数据进行训练。将单词对的多语言bnf作为初始特征表示来训练自动编码器(AE)。我们从成对训练声发射的内部隐藏层提取特征,对QbE-STD进行声学模式匹配。我们在TIMIT和Switchboard语料库上的实验表明,与初始特征表示相比,两两学习的平均精度(MAP)分别提高了7.61%和8.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pairwise learning using multi-lingual bottleneck features for low-resource query-by-example spoken term detection
We propose to use a feature representation obtained by pairwise learning in a low-resource language for query-by-example spoken term detection (QbE-STD). We assume that word pairs identified by humans are available in the low-resource target language. The word pairs are parameterized by a multi-lingual bottleneck feature (BNF) extractor that is trained using transcribed data in high-resource languages. The multi-lingual BNFs of the word pairs are used as an initial feature representation to train an autoencoder (AE). We extract features from an internal hidden layer of the pairwise trained AE to perform acoustic pattern matching for QbE-STD. Our experiments on the TIMIT and Switchboard corpora show that the pairwise learning brings 7.61% and 8.75% relative improvements in mean average precision (MAP) respectively over the initial feature representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信