注意事项

Paul Charlebois
{"title":"注意事项","authors":"Paul Charlebois","doi":"10.4135/9781452204291.n11","DOIUrl":null,"url":null,"abstract":"Abstract. In the present paper, it is considered vibrating system acting by a rotation cam, which has a constant angular velocity and a motion law saw-tooth type. Using the Lagrange formalism or the Newton one, the motion mathematical model of the valve is obtained. For a numerical application, the motion differential equation is integrated with the help of integral Laplace transform. Thus, results the motion law of the valve under the form of a time function. The determination is made in two evaluation system in order to obtain a bigger accuracy of the results.","PeriodicalId":113409,"journal":{"name":"Education and other modes of thinking in Latin America","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Considerations\",\"authors\":\"Paul Charlebois\",\"doi\":\"10.4135/9781452204291.n11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In the present paper, it is considered vibrating system acting by a rotation cam, which has a constant angular velocity and a motion law saw-tooth type. Using the Lagrange formalism or the Newton one, the motion mathematical model of the valve is obtained. For a numerical application, the motion differential equation is integrated with the help of integral Laplace transform. Thus, results the motion law of the valve under the form of a time function. The determination is made in two evaluation system in order to obtain a bigger accuracy of the results.\",\"PeriodicalId\":113409,\"journal\":{\"name\":\"Education and other modes of thinking in Latin America\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education and other modes of thinking in Latin America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4135/9781452204291.n11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education and other modes of thinking in Latin America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4135/9781452204291.n11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

摘要本文考虑由旋转凸轮作用的振动系统,该系统具有恒定角速度和锯齿型运动规律。分别用拉格朗日和牛顿两种形式建立了阀的运动数学模型。对于数值应用,利用积分拉普拉斯变换对运动微分方程进行积分。从而得到了阀门在时间函数形式下的运动规律。为了获得更高的结果准确性,在两个评价体系中进行了测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Considerations
Abstract. In the present paper, it is considered vibrating system acting by a rotation cam, which has a constant angular velocity and a motion law saw-tooth type. Using the Lagrange formalism or the Newton one, the motion mathematical model of the valve is obtained. For a numerical application, the motion differential equation is integrated with the help of integral Laplace transform. Thus, results the motion law of the valve under the form of a time function. The determination is made in two evaluation system in order to obtain a bigger accuracy of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信