具有深度学习更新的鲁棒PHD滤波器,用于多人跟踪

P. Feng, Wenwu Wang, S. M. Naqvi, J. Chambers
{"title":"具有深度学习更新的鲁棒PHD滤波器,用于多人跟踪","authors":"P. Feng, Wenwu Wang, S. M. Naqvi, J. Chambers","doi":"10.1109/ICDSP.2015.7252076","DOIUrl":null,"url":null,"abstract":"We propose a novel robust probability hypothesis density (PHD) filter for multiple target tracking in an enclosed environment, where a deep learning method is used in the update step for combining different human features to mitigate the effect of measurement noise on the calculation of particle weights. Deep belief networks (DBNs) are trained based on both colour and oriented gradient (HOG) histogram features and then used to mitigate the measurement noise from the particle selection and PHD update step, thereby improving the tracking performance. To evaluate the proposed PHD filter, two sequences with 383 frames from the CAVIAR dataset are employed and both the optimal subpattern assignment (OSPA) and mean of error from each target method are used as objective measures. The results show that the proposed robust PHD filter outperforms the traditional PHD filter.","PeriodicalId":216293,"journal":{"name":"2015 IEEE International Conference on Digital Signal Processing (DSP)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A robust PHD filter with deep learning updating for multiple human tracking\",\"authors\":\"P. Feng, Wenwu Wang, S. M. Naqvi, J. Chambers\",\"doi\":\"10.1109/ICDSP.2015.7252076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel robust probability hypothesis density (PHD) filter for multiple target tracking in an enclosed environment, where a deep learning method is used in the update step for combining different human features to mitigate the effect of measurement noise on the calculation of particle weights. Deep belief networks (DBNs) are trained based on both colour and oriented gradient (HOG) histogram features and then used to mitigate the measurement noise from the particle selection and PHD update step, thereby improving the tracking performance. To evaluate the proposed PHD filter, two sequences with 383 frames from the CAVIAR dataset are employed and both the optimal subpattern assignment (OSPA) and mean of error from each target method are used as objective measures. The results show that the proposed robust PHD filter outperforms the traditional PHD filter.\",\"PeriodicalId\":216293,\"journal\":{\"name\":\"2015 IEEE International Conference on Digital Signal Processing (DSP)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2015.7252076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2015.7252076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种新的鲁棒概率假设密度(PHD)滤波器,用于封闭环境下的多目标跟踪,其中在更新步骤中使用深度学习方法来组合不同的人类特征,以减轻测量噪声对粒子权重计算的影响。深度信念网络(dbn)基于颜色直方图和定向梯度直方图特征进行训练,然后用于减轻粒子选择和PHD更新步骤产生的测量噪声,从而提高跟踪性能。为了对所提出的PHD滤波器进行评价,采用了CAVIAR数据集中两个383帧的序列,并以各目标方法的最优子模式分配(OSPA)和误差均值作为客观度量。结果表明,所提出的鲁棒PHD滤波器优于传统的PHD滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust PHD filter with deep learning updating for multiple human tracking
We propose a novel robust probability hypothesis density (PHD) filter for multiple target tracking in an enclosed environment, where a deep learning method is used in the update step for combining different human features to mitigate the effect of measurement noise on the calculation of particle weights. Deep belief networks (DBNs) are trained based on both colour and oriented gradient (HOG) histogram features and then used to mitigate the measurement noise from the particle selection and PHD update step, thereby improving the tracking performance. To evaluate the proposed PHD filter, two sequences with 383 frames from the CAVIAR dataset are employed and both the optimal subpattern assignment (OSPA) and mean of error from each target method are used as objective measures. The results show that the proposed robust PHD filter outperforms the traditional PHD filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信