温度时间序列预测的机器学习方法

Janmejay Pant, R. Sharma, Amit Juyal, Devendra Singh, Himanshu Pant, Puspha Pant
{"title":"温度时间序列预测的机器学习方法","authors":"Janmejay Pant, R. Sharma, Amit Juyal, Devendra Singh, Himanshu Pant, Puspha Pant","doi":"10.1109/ICECA55336.2022.10009165","DOIUrl":null,"url":null,"abstract":"In the modern world, weather forecasting is an essential application. The forecasts can help us reduce weather- related losses. The need for a massive data and highly computationally intensive parameterization procedure can be eliminated or reduced by the use of machine learning and deep learning algorithms for forecasting. This research work intends to forecast the temperature of three cities (Dehradun, Mukteshwar and Pantnagar) of Uttarakhand using emerging time series model AR/MA (Auto Regressive Integrated Moving Average). The results of this study prove that using the auto ARIMA produces very less MAPE (Mean Absolute Percentage Error) score for all testing data of all three regions. Our used model produces 8.45%,9.65% and 5.64% mean absolute percentage error in temperature data for Dehradun, Mukteshwar and Pantnagar respectively. Hence this paper explains briefly how different parameters can be used to formulate the AR/MA model to predict temperature. MAPE (Mean Absolute Percentage Error) indicates that auto AR/MA model yields excellent results.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Machine-Learning Approach to Time Series Forecasting of Temperature\",\"authors\":\"Janmejay Pant, R. Sharma, Amit Juyal, Devendra Singh, Himanshu Pant, Puspha Pant\",\"doi\":\"10.1109/ICECA55336.2022.10009165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern world, weather forecasting is an essential application. The forecasts can help us reduce weather- related losses. The need for a massive data and highly computationally intensive parameterization procedure can be eliminated or reduced by the use of machine learning and deep learning algorithms for forecasting. This research work intends to forecast the temperature of three cities (Dehradun, Mukteshwar and Pantnagar) of Uttarakhand using emerging time series model AR/MA (Auto Regressive Integrated Moving Average). The results of this study prove that using the auto ARIMA produces very less MAPE (Mean Absolute Percentage Error) score for all testing data of all three regions. Our used model produces 8.45%,9.65% and 5.64% mean absolute percentage error in temperature data for Dehradun, Mukteshwar and Pantnagar respectively. Hence this paper explains briefly how different parameters can be used to formulate the AR/MA model to predict temperature. MAPE (Mean Absolute Percentage Error) indicates that auto AR/MA model yields excellent results.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现代社会,天气预报是一项必不可少的应用。天气预报可以帮助我们减少与天气有关的损失。通过使用机器学习和深度学习算法进行预测,可以消除或减少对大量数据和高度计算密集型参数化过程的需求。本研究拟利用新兴时间序列模型AR/MA (Auto Regressive Integrated Moving Average)对北阿坎德邦德拉敦、穆克特什瓦尔和潘特纳格尔三个城市的气温进行预测。本研究的结果证明,使用自动ARIMA对所有三个区域的所有测试数据产生的MAPE(平均绝对百分比误差)分数非常低。我们使用的模型在德拉敦、Mukteshwar和Pantnagar的温度数据中分别产生8.45%、9.65%和5.64%的平均绝对百分比误差。因此,本文简要说明了如何使用不同的参数来制定AR/MA模型来预测温度。MAPE(平均绝对百分比误差)表明,自动AR/MA模型的结果非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine-Learning Approach to Time Series Forecasting of Temperature
In the modern world, weather forecasting is an essential application. The forecasts can help us reduce weather- related losses. The need for a massive data and highly computationally intensive parameterization procedure can be eliminated or reduced by the use of machine learning and deep learning algorithms for forecasting. This research work intends to forecast the temperature of three cities (Dehradun, Mukteshwar and Pantnagar) of Uttarakhand using emerging time series model AR/MA (Auto Regressive Integrated Moving Average). The results of this study prove that using the auto ARIMA produces very less MAPE (Mean Absolute Percentage Error) score for all testing data of all three regions. Our used model produces 8.45%,9.65% and 5.64% mean absolute percentage error in temperature data for Dehradun, Mukteshwar and Pantnagar respectively. Hence this paper explains briefly how different parameters can be used to formulate the AR/MA model to predict temperature. MAPE (Mean Absolute Percentage Error) indicates that auto AR/MA model yields excellent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信