选择性电子束熔炼Inconel 718的工艺优化及力学性能研究

Heng Dong, Feng Liu, Lin Ye, Xiaoqiong Ouyang, Qiang Wang, Li Wang, Lan Huang, Liming Tan, X. Jin, Y. Liu
{"title":"选择性电子束熔炼Inconel 718的工艺优化及力学性能研究","authors":"Heng Dong, Feng Liu, Lin Ye, Xiaoqiong Ouyang, Qiang Wang, Li Wang, Lan Huang, Liming Tan, X. Jin, Y. Liu","doi":"10.18063/msam.v1i4.23","DOIUrl":null,"url":null,"abstract":"To accelerate the optimization of selective electron-beam melting (SEBM) processing parameters, two machine learning models, Gaussian process regression, and support vector regression were applied in this work to predict the relative density of Inconel 718 from experimental data. The experimental validation indicated that the trained algorithms can precisely predict the relative density of SEBM samples. Moreover, the effects of different parameters on surface integrity, internal defects, and mechanical properties are discussed in this paper. The Inconel 718 samples with high density (>99.5%) prepared by the same SEBM energy density exhibit different mechanical properties, which are related to the existence of the unmelted powder, Laves phase, and grain structure. Finally, Inconel 718 sample with superior strength and plasticity was fabricated using the optimized processing parameters.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Process optimization and mechanical property investigation of Inconel 718 manufactured by selective electron beam melting\",\"authors\":\"Heng Dong, Feng Liu, Lin Ye, Xiaoqiong Ouyang, Qiang Wang, Li Wang, Lan Huang, Liming Tan, X. Jin, Y. Liu\",\"doi\":\"10.18063/msam.v1i4.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To accelerate the optimization of selective electron-beam melting (SEBM) processing parameters, two machine learning models, Gaussian process regression, and support vector regression were applied in this work to predict the relative density of Inconel 718 from experimental data. The experimental validation indicated that the trained algorithms can precisely predict the relative density of SEBM samples. Moreover, the effects of different parameters on surface integrity, internal defects, and mechanical properties are discussed in this paper. The Inconel 718 samples with high density (>99.5%) prepared by the same SEBM energy density exhibit different mechanical properties, which are related to the existence of the unmelted powder, Laves phase, and grain structure. Finally, Inconel 718 sample with superior strength and plasticity was fabricated using the optimized processing parameters.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18063/msam.v1i4.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i4.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了加速选择性电子束熔化(SEBM)工艺参数的优化,采用高斯过程回归和支持向量回归两种机器学习模型,从实验数据中预测Inconel 718的相对密度。实验验证表明,所训练的算法能够准确地预测SEBM样本的相对密度。此外,本文还讨论了不同参数对表面完整性、内部缺陷和力学性能的影响。相同SEBM能量密度制备的高密度(>99.5%)Inconel 718样品表现出不同的力学性能,这与未熔粉末、Laves相和晶粒组织的存在有关。最后,利用优化后的工艺参数制备出了具有良好强度和塑性的Inconel 718样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process optimization and mechanical property investigation of Inconel 718 manufactured by selective electron beam melting
To accelerate the optimization of selective electron-beam melting (SEBM) processing parameters, two machine learning models, Gaussian process regression, and support vector regression were applied in this work to predict the relative density of Inconel 718 from experimental data. The experimental validation indicated that the trained algorithms can precisely predict the relative density of SEBM samples. Moreover, the effects of different parameters on surface integrity, internal defects, and mechanical properties are discussed in this paper. The Inconel 718 samples with high density (>99.5%) prepared by the same SEBM energy density exhibit different mechanical properties, which are related to the existence of the unmelted powder, Laves phase, and grain structure. Finally, Inconel 718 sample with superior strength and plasticity was fabricated using the optimized processing parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信