健身领域的障碍和实现优化的补救措施

Khaled Almejalli
{"title":"健身领域的障碍和实现优化的补救措施","authors":"Khaled Almejalli","doi":"10.1109/CSPIS.2018.8642734","DOIUrl":null,"url":null,"abstract":"Past several decades have witnessed a rapid increase in the nature-inspired computational techniques. Evolutionary Computation is one such group of algorithms inspired by the theory of natural selection and survival of the fittest. This paper presents some for the key problems in the fitness landscape of such algorithms that make it difficult to converge to an optimum solution. These problems not only yield poor convergence but makes the use of Evolutionary Computation techniques less effective. This work then suggests some of the remedies to overcome these hindrances while designing the problem and the objective function. If properly incorporated, the suggested countermeasures enhance the ability of these methods in reaching an optimum solution faster and without entrapment in the local optima.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hindrances in the Fitness Landscape and Remedies to Achieve Optimization\",\"authors\":\"Khaled Almejalli\",\"doi\":\"10.1109/CSPIS.2018.8642734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Past several decades have witnessed a rapid increase in the nature-inspired computational techniques. Evolutionary Computation is one such group of algorithms inspired by the theory of natural selection and survival of the fittest. This paper presents some for the key problems in the fitness landscape of such algorithms that make it difficult to converge to an optimum solution. These problems not only yield poor convergence but makes the use of Evolutionary Computation techniques less effective. This work then suggests some of the remedies to overcome these hindrances while designing the problem and the objective function. If properly incorporated, the suggested countermeasures enhance the ability of these methods in reaching an optimum solution faster and without entrapment in the local optima.\",\"PeriodicalId\":251356,\"journal\":{\"name\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPIS.2018.8642734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,受自然启发的计算技术得到了迅速发展。进化计算就是这样一组受自然选择和适者生存理论启发的算法。本文提出了这类算法在适应度方面的一些关键问题,这些问题使其难以收敛到最优解。这些问题不仅产生较差的收敛性,而且使进化计算技术的使用效率降低。然后,在设计问题和目标函数时,提出了克服这些障碍的一些补救措施。如果适当结合,建议的对策可以提高这些方法更快地达到最优解决方案的能力,而不会陷入局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hindrances in the Fitness Landscape and Remedies to Achieve Optimization
Past several decades have witnessed a rapid increase in the nature-inspired computational techniques. Evolutionary Computation is one such group of algorithms inspired by the theory of natural selection and survival of the fittest. This paper presents some for the key problems in the fitness landscape of such algorithms that make it difficult to converge to an optimum solution. These problems not only yield poor convergence but makes the use of Evolutionary Computation techniques less effective. This work then suggests some of the remedies to overcome these hindrances while designing the problem and the objective function. If properly incorporated, the suggested countermeasures enhance the ability of these methods in reaching an optimum solution faster and without entrapment in the local optima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信