符合断言的路径敏感资源分析

D. Chu, J. Jaffar
{"title":"符合断言的路径敏感资源分析","authors":"D. Chu, J. Jaffar","doi":"10.1109/EMSOFT.2013.6658593","DOIUrl":null,"url":null,"abstract":"We consider the problem of bounding the worst-case resource usage of programs, where assertions about valid program executions may be enforced at selected program points. It is folklore that to be precise, path-sensitivity (up to loops) is needed. This entails unrolling loops in the manner of symbolic simulation. To be tractable, however, the treatment of the individual loop iterations must be greedy in the sense once analysis is finished on one iteration, we cannot backtrack to change it. We show that under these conditions, enforcing assertions produces unsound results. The fundamental reason is that complying with assertions requires the analysis to be fully sensitive (also with loops) wrt. the assertion variables. We then present an algorithm where the treatment of each loop is separated in two phases. The first phase uses a greedy strategy in unrolling the loop. This phase explores what is conceptually a symbolic execution tree, which is of enormous size, while eliminates infeasible paths and dominated paths that guaranteed not to contribute to the worst case bound. A compact representation is produced at the end of this phase. Finally, the second phase attacks the remaining problem, to determine the worst-case path in the simplified tree, excluding all paths that violate the assertions from bound calculation. Scalability, in both phases, is achieved via an adaptation of a dynamic programming algorithm.","PeriodicalId":325726,"journal":{"name":"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path-sensitive resource analysis compliant with assertions\",\"authors\":\"D. Chu, J. Jaffar\",\"doi\":\"10.1109/EMSOFT.2013.6658593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of bounding the worst-case resource usage of programs, where assertions about valid program executions may be enforced at selected program points. It is folklore that to be precise, path-sensitivity (up to loops) is needed. This entails unrolling loops in the manner of symbolic simulation. To be tractable, however, the treatment of the individual loop iterations must be greedy in the sense once analysis is finished on one iteration, we cannot backtrack to change it. We show that under these conditions, enforcing assertions produces unsound results. The fundamental reason is that complying with assertions requires the analysis to be fully sensitive (also with loops) wrt. the assertion variables. We then present an algorithm where the treatment of each loop is separated in two phases. The first phase uses a greedy strategy in unrolling the loop. This phase explores what is conceptually a symbolic execution tree, which is of enormous size, while eliminates infeasible paths and dominated paths that guaranteed not to contribute to the worst case bound. A compact representation is produced at the end of this phase. Finally, the second phase attacks the remaining problem, to determine the worst-case path in the simplified tree, excluding all paths that violate the assertions from bound calculation. Scalability, in both phases, is achieved via an adaptation of a dynamic programming algorithm.\",\"PeriodicalId\":325726,\"journal\":{\"name\":\"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2013.6658593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2013.6658593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑限定程序的最坏情况资源使用的问题,在这种情况下,关于有效程序执行的断言可以在选定的程序点强制执行。根据民间传说,精确地说,需要路径敏感性(直到循环)。这需要以符号模拟的方式展开循环。然而,为了便于处理,单个循环迭代的处理必须是贪婪的,因为一旦在一个迭代上完成分析,我们就不能回溯到改变它。我们表明,在这些条件下,强制执行断言会产生不可靠的结果。最根本的原因是遵循断言要求分析完全敏感(也包括循环)。断言变量。然后,我们提出了一种算法,其中每个循环的处理分为两个阶段。第一阶段在展开循环时使用贪婪策略。这个阶段探索了符号执行树的概念,它的大小非常大,同时消除了不可行的路径和保证不会导致最坏情况的主导路径。在此阶段结束时产生一个紧凑的表示。最后,第二阶段解决剩下的问题,确定简化树中的最坏情况路径,从边界计算中排除所有违反断言的路径。在这两个阶段中,可伸缩性是通过对动态规划算法的适应来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path-sensitive resource analysis compliant with assertions
We consider the problem of bounding the worst-case resource usage of programs, where assertions about valid program executions may be enforced at selected program points. It is folklore that to be precise, path-sensitivity (up to loops) is needed. This entails unrolling loops in the manner of symbolic simulation. To be tractable, however, the treatment of the individual loop iterations must be greedy in the sense once analysis is finished on one iteration, we cannot backtrack to change it. We show that under these conditions, enforcing assertions produces unsound results. The fundamental reason is that complying with assertions requires the analysis to be fully sensitive (also with loops) wrt. the assertion variables. We then present an algorithm where the treatment of each loop is separated in two phases. The first phase uses a greedy strategy in unrolling the loop. This phase explores what is conceptually a symbolic execution tree, which is of enormous size, while eliminates infeasible paths and dominated paths that guaranteed not to contribute to the worst case bound. A compact representation is produced at the end of this phase. Finally, the second phase attacks the remaining problem, to determine the worst-case path in the simplified tree, excluding all paths that violate the assertions from bound calculation. Scalability, in both phases, is achieved via an adaptation of a dynamic programming algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信