Florian Jomrich, A. Herzberger, Tobias Meuser, Björn Richerzhagen, R. Steinmetz, Cornelius Wille
{"title":"高度自动驾驶的蜂窝带宽预测-基于真实世界数据的机器学习方法的评估","authors":"Florian Jomrich, A. Herzberger, Tobias Meuser, Björn Richerzhagen, R. Steinmetz, Cornelius Wille","doi":"10.5220/0006692501210132","DOIUrl":null,"url":null,"abstract":"To enable highly automated driving and the associated comfort services for the driver, vehicles require a reliable and constant cellular data connection. However, due to their mobility vehicles experience significant fluctuations in their connection quality in terms of bandwidth and availability. To maintain constantly high quality of service, these fluctuations need to be anticipated and predicted before they occur. To this end, different techniques such as connectivity maps and online throughput estimations exist. In this paper, we investigate the possibilities of a large-scale future deployment of such techniques by relying solely on lowcost hardware for network measurements. Therefore, we conducted a measurement campaign over three weeks in which more than 74,000 throughput estimates with correlated network quality parameters were obtained. Based on this data set—which we make publicly available to the community—we provide insights in the challenging task of network quality prediction for vehicular scenarios. More specifically, we analyse the potential of machine learning approaches for bandwidth prediction and assess their underlying assumptions.","PeriodicalId":218840,"journal":{"name":"International Conference on Vehicle Technology and Intelligent Transport Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Cellular Bandwidth Prediction for Highly Automated Driving - Evaluation of Machine Learning Approaches based on Real-World Data\",\"authors\":\"Florian Jomrich, A. Herzberger, Tobias Meuser, Björn Richerzhagen, R. Steinmetz, Cornelius Wille\",\"doi\":\"10.5220/0006692501210132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enable highly automated driving and the associated comfort services for the driver, vehicles require a reliable and constant cellular data connection. However, due to their mobility vehicles experience significant fluctuations in their connection quality in terms of bandwidth and availability. To maintain constantly high quality of service, these fluctuations need to be anticipated and predicted before they occur. To this end, different techniques such as connectivity maps and online throughput estimations exist. In this paper, we investigate the possibilities of a large-scale future deployment of such techniques by relying solely on lowcost hardware for network measurements. Therefore, we conducted a measurement campaign over three weeks in which more than 74,000 throughput estimates with correlated network quality parameters were obtained. Based on this data set—which we make publicly available to the community—we provide insights in the challenging task of network quality prediction for vehicular scenarios. More specifically, we analyse the potential of machine learning approaches for bandwidth prediction and assess their underlying assumptions.\",\"PeriodicalId\":218840,\"journal\":{\"name\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0006692501210132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicle Technology and Intelligent Transport Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006692501210132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cellular Bandwidth Prediction for Highly Automated Driving - Evaluation of Machine Learning Approaches based on Real-World Data
To enable highly automated driving and the associated comfort services for the driver, vehicles require a reliable and constant cellular data connection. However, due to their mobility vehicles experience significant fluctuations in their connection quality in terms of bandwidth and availability. To maintain constantly high quality of service, these fluctuations need to be anticipated and predicted before they occur. To this end, different techniques such as connectivity maps and online throughput estimations exist. In this paper, we investigate the possibilities of a large-scale future deployment of such techniques by relying solely on lowcost hardware for network measurements. Therefore, we conducted a measurement campaign over three weeks in which more than 74,000 throughput estimates with correlated network quality parameters were obtained. Based on this data set—which we make publicly available to the community—we provide insights in the challenging task of network quality prediction for vehicular scenarios. More specifically, we analyse the potential of machine learning approaches for bandwidth prediction and assess their underlying assumptions.