基于fpga的电阻抗层析成像系统自适应降噪算法的实现

M. Baidillah, Z. Gao, Al Amin Saichul Iman, M. Takei
{"title":"基于fpga的电阻抗层析成像系统自适应降噪算法的实现","authors":"M. Baidillah, Z. Gao, Al Amin Saichul Iman, M. Takei","doi":"10.30564/ese.v1i2.1043","DOIUrl":null,"url":null,"abstract":"Electrical Impedance Tomography (EIT) as a non-invasive of electrical conductivity imaging method commonly employs the stationary-coefficient based filters (such as FFT) in order to remove the noise signal. In the practical applications, the stationary-coefficient based filters fail to remove the time-varying random noise which leads to the lack of impedance measurement sensitivity. In this paper, the implementation of adaptive noise cancellation (ANC) algorithms which are Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) filters onto Field Programmable Gate Array (FPGA)-based EIT system is proposed in order to eliminate the time-varying random noise signal. The proposed method was evaluated through experimental studies with biomaterial phantom. The reconstructed EIT images with NLMS is better than the images with LMS by amplitude response AR = 12.5%, position error PE = 200%, resolution RES = 33%, and shape deformation SD = 66%. Moreover, the Analog-to-Digital Converter (ADC) performances of power spectral density (PSD) and the effective number of bit ENOB with NLMS is higher than the performances with LMS by SI = 5.7 % and ENOB = 15.4 %. The results showed that implementing ANC algorithms onto FPGA-based EIT system shows significantly more accurate image reconstruction as compared without ANC algorithms implementation.","PeriodicalId":375676,"journal":{"name":"Electrical Science & Engineering","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Noise Cancellation Algorithms Implemented onto FPGA-Based Electrical Impedance Tomography System\",\"authors\":\"M. Baidillah, Z. Gao, Al Amin Saichul Iman, M. Takei\",\"doi\":\"10.30564/ese.v1i2.1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical Impedance Tomography (EIT) as a non-invasive of electrical conductivity imaging method commonly employs the stationary-coefficient based filters (such as FFT) in order to remove the noise signal. In the practical applications, the stationary-coefficient based filters fail to remove the time-varying random noise which leads to the lack of impedance measurement sensitivity. In this paper, the implementation of adaptive noise cancellation (ANC) algorithms which are Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) filters onto Field Programmable Gate Array (FPGA)-based EIT system is proposed in order to eliminate the time-varying random noise signal. The proposed method was evaluated through experimental studies with biomaterial phantom. The reconstructed EIT images with NLMS is better than the images with LMS by amplitude response AR = 12.5%, position error PE = 200%, resolution RES = 33%, and shape deformation SD = 66%. Moreover, the Analog-to-Digital Converter (ADC) performances of power spectral density (PSD) and the effective number of bit ENOB with NLMS is higher than the performances with LMS by SI = 5.7 % and ENOB = 15.4 %. The results showed that implementing ANC algorithms onto FPGA-based EIT system shows significantly more accurate image reconstruction as compared without ANC algorithms implementation.\",\"PeriodicalId\":375676,\"journal\":{\"name\":\"Electrical Science & Engineering\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/ese.v1i2.1043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/ese.v1i2.1043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电阻抗断层成像(EIT)作为一种非侵入性的电导率成像方法,通常采用基于平稳系数的滤波器(如FFT)来去除噪声信号。在实际应用中,基于平稳系数的滤波器不能去除时变随机噪声,导致阻抗测量灵敏度不足。本文提出了在基于现场可编程门阵列(FPGA)的EIT系统中实现最小均方滤波器(LMS)和归一化最小均方滤波器(NLMS)的自适应消噪算法,以消除时变随机噪声信号。通过生物材料幻影的实验研究对该方法进行了评价。用NLMS重建的EIT图像的幅值响应AR = 12.5%,位置误差PE = 200%,分辨率RES = 33%,形状变形SD = 66%,优于LMS重建的图像。此外,采用NLMS的模数转换器(ADC)的功率谱密度(PSD)和有效位元数(ENOB)性能分别比采用LMS的高SI = 5.7%和ENOB = 15.4%。结果表明,在基于fpga的EIT系统上实现ANC算法后,图像重建精度明显高于未实现ANC算法的EIT系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Noise Cancellation Algorithms Implemented onto FPGA-Based Electrical Impedance Tomography System
Electrical Impedance Tomography (EIT) as a non-invasive of electrical conductivity imaging method commonly employs the stationary-coefficient based filters (such as FFT) in order to remove the noise signal. In the practical applications, the stationary-coefficient based filters fail to remove the time-varying random noise which leads to the lack of impedance measurement sensitivity. In this paper, the implementation of adaptive noise cancellation (ANC) algorithms which are Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) filters onto Field Programmable Gate Array (FPGA)-based EIT system is proposed in order to eliminate the time-varying random noise signal. The proposed method was evaluated through experimental studies with biomaterial phantom. The reconstructed EIT images with NLMS is better than the images with LMS by amplitude response AR = 12.5%, position error PE = 200%, resolution RES = 33%, and shape deformation SD = 66%. Moreover, the Analog-to-Digital Converter (ADC) performances of power spectral density (PSD) and the effective number of bit ENOB with NLMS is higher than the performances with LMS by SI = 5.7 % and ENOB = 15.4 %. The results showed that implementing ANC algorithms onto FPGA-based EIT system shows significantly more accurate image reconstruction as compared without ANC algorithms implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信