V. Subramanian, Kadangode K. Ramakrishnan, S. Kalyanaraman
{"title":"极端无线网络环境的容错链路级机制","authors":"V. Subramanian, Kadangode K. Ramakrishnan, S. Kalyanaraman","doi":"10.1109/COMSWA.2007.382567","DOIUrl":null,"url":null,"abstract":"Wireless links pose significant challenges in terms of achievable goodput and residual loss-rate. Our recent enhancements, called LT-TCP make TCP loss-tolerant in heavy/bursty erasure environments. Link-level protocols mitigate these problems by using a combination of FEC and ARQ but are insufficient when the channel experiences disruptions. When the underlying source of loss is interference (e.g., 802.11 environments), MAC-level mechanisms misinterpret interference as noise leading to poor scheduling (e.g., capture effects) and limit the benefit of transport layer mitigation efforts. We propose enhancements to link-level protocols that enable survival during disruptions. We explore an adaptive link-level strategy to export a small residual loss rate and bounded latency under high loss/ disruption conditions. We evaluate the proposed link-level enhancements, showing that the combination with LT-TCP helps achieve significant end-to-end performance gains. We also demonstrate the trade-off between reduced link layer residual loss (by increasing ARQ persistence) and transport layer timeouts.","PeriodicalId":191295,"journal":{"name":"2007 2nd International Conference on Communication Systems Software and Middleware","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Disruption-Tolerant Link-level Mechanisms for Extreme Wireless Network Environments\",\"authors\":\"V. Subramanian, Kadangode K. Ramakrishnan, S. Kalyanaraman\",\"doi\":\"10.1109/COMSWA.2007.382567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless links pose significant challenges in terms of achievable goodput and residual loss-rate. Our recent enhancements, called LT-TCP make TCP loss-tolerant in heavy/bursty erasure environments. Link-level protocols mitigate these problems by using a combination of FEC and ARQ but are insufficient when the channel experiences disruptions. When the underlying source of loss is interference (e.g., 802.11 environments), MAC-level mechanisms misinterpret interference as noise leading to poor scheduling (e.g., capture effects) and limit the benefit of transport layer mitigation efforts. We propose enhancements to link-level protocols that enable survival during disruptions. We explore an adaptive link-level strategy to export a small residual loss rate and bounded latency under high loss/ disruption conditions. We evaluate the proposed link-level enhancements, showing that the combination with LT-TCP helps achieve significant end-to-end performance gains. We also demonstrate the trade-off between reduced link layer residual loss (by increasing ARQ persistence) and transport layer timeouts.\",\"PeriodicalId\":191295,\"journal\":{\"name\":\"2007 2nd International Conference on Communication Systems Software and Middleware\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Conference on Communication Systems Software and Middleware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSWA.2007.382567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Communication Systems Software and Middleware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSWA.2007.382567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disruption-Tolerant Link-level Mechanisms for Extreme Wireless Network Environments
Wireless links pose significant challenges in terms of achievable goodput and residual loss-rate. Our recent enhancements, called LT-TCP make TCP loss-tolerant in heavy/bursty erasure environments. Link-level protocols mitigate these problems by using a combination of FEC and ARQ but are insufficient when the channel experiences disruptions. When the underlying source of loss is interference (e.g., 802.11 environments), MAC-level mechanisms misinterpret interference as noise leading to poor scheduling (e.g., capture effects) and limit the benefit of transport layer mitigation efforts. We propose enhancements to link-level protocols that enable survival during disruptions. We explore an adaptive link-level strategy to export a small residual loss rate and bounded latency under high loss/ disruption conditions. We evaluate the proposed link-level enhancements, showing that the combination with LT-TCP helps achieve significant end-to-end performance gains. We also demonstrate the trade-off between reduced link layer residual loss (by increasing ARQ persistence) and transport layer timeouts.