{"title":"南非离网微电网部署的发电机调度策略建模和优化研究","authors":"Fiona Oloo, Basetsana Molefyane, Mpeli J Rampokanyo","doi":"10.1109/ENERGYCon48941.2020.9236547","DOIUrl":null,"url":null,"abstract":"This paper presents the modelling of an off-grid micro-grid situated in a remote rural village in Eastern Cape province in South Africa. The modelling looks at the optimization studies for control dispatch strategies for the integration of wind power into the existing micro-grid which comprises an electric load supplied by photovoltaic power, battery bank for energy storage and a diesel generator. The optimization studies are performed using HOMER Pro® and aims to identify the best possible dispatch strategy for the dispatchable generation Le. (diesel generator and battery storage) that minimizes load shedding and excess energy production in a system where the all the generation has been sized already. Four dispatch strategies built into HOMER Pro®, namely Cycle Charging, Load Following, Combined Dispatch and HOMER Predictive Strategy are tested. The aim of this paper is therefore to test and find which of the above dispatch strategies is the best fit for the rural village. Once the best-fit strategy has been determined, it is further customised and optimised for the rural village load profile.","PeriodicalId":156687,"journal":{"name":"2020 6th IEEE International Energy Conference (ENERGYCon)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modelling and optimisation studies for generator dispatch strategies for deployment of an off-grid micro-grid in South Africa\",\"authors\":\"Fiona Oloo, Basetsana Molefyane, Mpeli J Rampokanyo\",\"doi\":\"10.1109/ENERGYCon48941.2020.9236547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the modelling of an off-grid micro-grid situated in a remote rural village in Eastern Cape province in South Africa. The modelling looks at the optimization studies for control dispatch strategies for the integration of wind power into the existing micro-grid which comprises an electric load supplied by photovoltaic power, battery bank for energy storage and a diesel generator. The optimization studies are performed using HOMER Pro® and aims to identify the best possible dispatch strategy for the dispatchable generation Le. (diesel generator and battery storage) that minimizes load shedding and excess energy production in a system where the all the generation has been sized already. Four dispatch strategies built into HOMER Pro®, namely Cycle Charging, Load Following, Combined Dispatch and HOMER Predictive Strategy are tested. The aim of this paper is therefore to test and find which of the above dispatch strategies is the best fit for the rural village. Once the best-fit strategy has been determined, it is further customised and optimised for the rural village load profile.\",\"PeriodicalId\":156687,\"journal\":{\"name\":\"2020 6th IEEE International Energy Conference (ENERGYCon)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th IEEE International Energy Conference (ENERGYCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCon48941.2020.9236547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE International Energy Conference (ENERGYCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCon48941.2020.9236547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and optimisation studies for generator dispatch strategies for deployment of an off-grid micro-grid in South Africa
This paper presents the modelling of an off-grid micro-grid situated in a remote rural village in Eastern Cape province in South Africa. The modelling looks at the optimization studies for control dispatch strategies for the integration of wind power into the existing micro-grid which comprises an electric load supplied by photovoltaic power, battery bank for energy storage and a diesel generator. The optimization studies are performed using HOMER Pro® and aims to identify the best possible dispatch strategy for the dispatchable generation Le. (diesel generator and battery storage) that minimizes load shedding and excess energy production in a system where the all the generation has been sized already. Four dispatch strategies built into HOMER Pro®, namely Cycle Charging, Load Following, Combined Dispatch and HOMER Predictive Strategy are tested. The aim of this paper is therefore to test and find which of the above dispatch strategies is the best fit for the rural village. Once the best-fit strategy has been determined, it is further customised and optimised for the rural village load profile.