关于梯形规则的后验误差界

B. Hong, Intae Ryoo, G. Khang
{"title":"关于梯形规则的后验误差界","authors":"B. Hong, Intae Ryoo, G. Khang","doi":"10.1109/ICOIN.2019.8718134","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the average case setting and the probabilistic setting of composite Trapezoidal rule assuming that the class of integrand on an interval [0], [1] is equipped with a variant of the r-fold wiener measure based on the a finite number of function values for numerical integration. Moreover, we compute a posteriori bounds on the error of Trapezoidal rule from a probabilistic point of view. This a new a posteriori error bound is better than a bound that is commonly used in practice.","PeriodicalId":422041,"journal":{"name":"2019 International Conference on Information Networking (ICOIN)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Posteriori Error Bounds of Trapezoidal Rule\",\"authors\":\"B. Hong, Intae Ryoo, G. Khang\",\"doi\":\"10.1109/ICOIN.2019.8718134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the average case setting and the probabilistic setting of composite Trapezoidal rule assuming that the class of integrand on an interval [0], [1] is equipped with a variant of the r-fold wiener measure based on the a finite number of function values for numerical integration. Moreover, we compute a posteriori bounds on the error of Trapezoidal rule from a probabilistic point of view. This a new a posteriori error bound is better than a bound that is commonly used in practice.\",\"PeriodicalId\":422041,\"journal\":{\"name\":\"2019 International Conference on Information Networking (ICOIN)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN.2019.8718134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2019.8718134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在区间[0],[1]上的被积函数类具有基于有限个函数值的r-fold维纳测度的变型的情况下,复合梯形规则的平均情况集和概率集。此外,我们还从概率的角度计算了梯形规则误差的后验界。这种新的后验误差界优于实践中常用的误差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Posteriori Error Bounds of Trapezoidal Rule
In this paper, we discuss the average case setting and the probabilistic setting of composite Trapezoidal rule assuming that the class of integrand on an interval [0], [1] is equipped with a variant of the r-fold wiener measure based on the a finite number of function values for numerical integration. Moreover, we compute a posteriori bounds on the error of Trapezoidal rule from a probabilistic point of view. This a new a posteriori error bound is better than a bound that is commonly used in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信