{"title":"基于卷积神经网络和智能投票的面部表情分类","authors":"Rodrigo Moraes, Elloá B. Guedes, C. Figueiredo","doi":"10.5753/ENIAC.2018.4448","DOIUrl":null,"url":null,"abstract":"Facial Expression is a very important factor in the social interaction of human beings. And technologies that can automatically interpret and respond to stimuli of facial expressions already find a wide variety of applications, from antidepressant drug testing to fatigue analysis of drivers and pilots. In this context, the following work presents a model for Automatic Classification of Facial Expression using as a training base the dataset Challenges in Representation Learning (FER2013), characterized by examples of spontaneous facial expressions in uncontrolled environments. The presented method is composed by a Convolutional Neural Networks Ensemble architecture, using a non-trivial voting system, based on a smart model, Xtreme Gradient Boosting - XGBoost. As performance criteria for validation of the proposed model, were used K-fold and F1 Score Micro techniques to guarantee robustness and reliability of the results, which are competitive with state-of-the-art works.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial Expressions Classification with Ensembles of Convolutional Neural Networks and Smart Voting\",\"authors\":\"Rodrigo Moraes, Elloá B. Guedes, C. Figueiredo\",\"doi\":\"10.5753/ENIAC.2018.4448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial Expression is a very important factor in the social interaction of human beings. And technologies that can automatically interpret and respond to stimuli of facial expressions already find a wide variety of applications, from antidepressant drug testing to fatigue analysis of drivers and pilots. In this context, the following work presents a model for Automatic Classification of Facial Expression using as a training base the dataset Challenges in Representation Learning (FER2013), characterized by examples of spontaneous facial expressions in uncontrolled environments. The presented method is composed by a Convolutional Neural Networks Ensemble architecture, using a non-trivial voting system, based on a smart model, Xtreme Gradient Boosting - XGBoost. As performance criteria for validation of the proposed model, were used K-fold and F1 Score Micro techniques to guarantee robustness and reliability of the results, which are competitive with state-of-the-art works.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ENIAC.2018.4448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial Expressions Classification with Ensembles of Convolutional Neural Networks and Smart Voting
Facial Expression is a very important factor in the social interaction of human beings. And technologies that can automatically interpret and respond to stimuli of facial expressions already find a wide variety of applications, from antidepressant drug testing to fatigue analysis of drivers and pilots. In this context, the following work presents a model for Automatic Classification of Facial Expression using as a training base the dataset Challenges in Representation Learning (FER2013), characterized by examples of spontaneous facial expressions in uncontrolled environments. The presented method is composed by a Convolutional Neural Networks Ensemble architecture, using a non-trivial voting system, based on a smart model, Xtreme Gradient Boosting - XGBoost. As performance criteria for validation of the proposed model, were used K-fold and F1 Score Micro techniques to guarantee robustness and reliability of the results, which are competitive with state-of-the-art works.