面向视频动作分类的多视觉信息融合与聚合

Xuchao Gong, Zongmin Li, Xiangdong Wang
{"title":"面向视频动作分类的多视觉信息融合与聚合","authors":"Xuchao Gong, Zongmin Li, Xiangdong Wang","doi":"10.1117/12.2644312","DOIUrl":null,"url":null,"abstract":"In order to fully mine the performance improvement of spatio-temporal features in video action classification, we propose a multi-visual information fusion time sequence prediction network (MI-TPN) which based on the feature aggregation model ActionVLAD. The method includes three parts: multi-visual information fusion, time sequence feature modeling and spatiotemporal feature aggregation. In the multi-visual information fusion, the RGB features and optical flow features are combined, the visual context and action description details are fully considered. In time sequence feature modeling, the temporal relationship is modeled by LSTM to obtain the importance measurement between temporal description features. Finally, in feature aggregation, time step feature and spatiotemporal center attention mechanism are used to aggregate features and projected them into a common feature space. This method obtains good results on three commonly used comparative datasets UCF101, HMDB51 and Something.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-visual information fusion and aggregation for video action classification\",\"authors\":\"Xuchao Gong, Zongmin Li, Xiangdong Wang\",\"doi\":\"10.1117/12.2644312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to fully mine the performance improvement of spatio-temporal features in video action classification, we propose a multi-visual information fusion time sequence prediction network (MI-TPN) which based on the feature aggregation model ActionVLAD. The method includes three parts: multi-visual information fusion, time sequence feature modeling and spatiotemporal feature aggregation. In the multi-visual information fusion, the RGB features and optical flow features are combined, the visual context and action description details are fully considered. In time sequence feature modeling, the temporal relationship is modeled by LSTM to obtain the importance measurement between temporal description features. Finally, in feature aggregation, time step feature and spatiotemporal center attention mechanism are used to aggregate features and projected them into a common feature space. This method obtains good results on three commonly used comparative datasets UCF101, HMDB51 and Something.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了充分挖掘视频动作分类中时空特征的性能提升,提出了一种基于特征聚合模型ActionVLAD的多视觉信息融合时间序列预测网络(MI-TPN)。该方法包括多视觉信息融合、时间序列特征建模和时空特征聚合三个部分。在多视觉信息融合中,RGB特征和光流特征相结合,充分考虑了视觉语境和动作描述细节。在时序特征建模中,利用LSTM对时序关系进行建模,得到时序描述特征之间的重要度量。最后,在特征聚合中,利用时间步长特征和时空中心注意机制对特征进行聚合并投影到公共特征空间中。该方法在UCF101、HMDB51和Something三个常用的对比数据集上取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-visual information fusion and aggregation for video action classification
In order to fully mine the performance improvement of spatio-temporal features in video action classification, we propose a multi-visual information fusion time sequence prediction network (MI-TPN) which based on the feature aggregation model ActionVLAD. The method includes three parts: multi-visual information fusion, time sequence feature modeling and spatiotemporal feature aggregation. In the multi-visual information fusion, the RGB features and optical flow features are combined, the visual context and action description details are fully considered. In time sequence feature modeling, the temporal relationship is modeled by LSTM to obtain the importance measurement between temporal description features. Finally, in feature aggregation, time step feature and spatiotemporal center attention mechanism are used to aggregate features and projected them into a common feature space. This method obtains good results on three commonly used comparative datasets UCF101, HMDB51 and Something.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信