神经控制器与P-I控制器的比较分析

V. Nagarajan, M. Balaji, V. Kamaraj, B. Seetha
{"title":"神经控制器与P-I控制器的比较分析","authors":"V. Nagarajan, M. Balaji, V. Kamaraj, B. Seetha","doi":"10.1109/ICEES.2014.6924154","DOIUrl":null,"url":null,"abstract":"This paper describes Artificial Neural Network (ANN) based speed and current controller design for Permanent Magnet Synchronous Motor (PMSM).The neural network controllers are designed to translate the speed and current errors into respective driving voltage signals to the input of PMSM. A multilayer feed forward neural network is trained using Back propagation learning algorithm to estimate the driving voltage input of PMSM. To analyze the performance of neural controller, the overall system is simulated under various operating conditions. The simulation results compared with conventional P-I controller for different conditions highlight the performance of the proposed controller in steady state and transient conditions.","PeriodicalId":315326,"journal":{"name":"2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of neural and P-I controller for\",\"authors\":\"V. Nagarajan, M. Balaji, V. Kamaraj, B. Seetha\",\"doi\":\"10.1109/ICEES.2014.6924154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes Artificial Neural Network (ANN) based speed and current controller design for Permanent Magnet Synchronous Motor (PMSM).The neural network controllers are designed to translate the speed and current errors into respective driving voltage signals to the input of PMSM. A multilayer feed forward neural network is trained using Back propagation learning algorithm to estimate the driving voltage input of PMSM. To analyze the performance of neural controller, the overall system is simulated under various operating conditions. The simulation results compared with conventional P-I controller for different conditions highlight the performance of the proposed controller in steady state and transient conditions.\",\"PeriodicalId\":315326,\"journal\":{\"name\":\"2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEES.2014.6924154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEES.2014.6924154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了基于人工神经网络(ANN)的永磁同步电动机速度和电流控制器的设计。设计了神经网络控制器,将速度和电流误差分别转化为驱动电压信号输入到永磁同步电机的输入端。利用反向传播学习算法训练多层前馈神经网络来估计永磁同步电机的驱动电压输入。为了分析神经控制器的性能,对整个系统在各种工况下进行了仿真。通过与传统P-I控制器在不同工况下的仿真对比,验证了该控制器在稳态和瞬态工况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of neural and P-I controller for
This paper describes Artificial Neural Network (ANN) based speed and current controller design for Permanent Magnet Synchronous Motor (PMSM).The neural network controllers are designed to translate the speed and current errors into respective driving voltage signals to the input of PMSM. A multilayer feed forward neural network is trained using Back propagation learning algorithm to estimate the driving voltage input of PMSM. To analyze the performance of neural controller, the overall system is simulated under various operating conditions. The simulation results compared with conventional P-I controller for different conditions highlight the performance of the proposed controller in steady state and transient conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信