{"title":"基于学习的高级验证技术","authors":"J. Jain, R. Mukherjee, M. Fujita","doi":"10.1145/217474.217564","DOIUrl":null,"url":null,"abstract":"Design verification poses a very practical problem during circuit synthesis. Learning based verification techniques prove to be an attractive option for verifying two circuits with internal gates having simple functional relationships. We present a verification method which employs a learning technique based on symbolic manipulation and which can more efficiently learn indirect implications. The method can also learn some useful functional implications. We also present a framework in which an indirect implication technique is integrated with an OBDD based verification tool. We present highly efficient verification results on some ISCAS circuits as well as on some very hard industrial circuits.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Advanced Verification Techniques Based on Learning\",\"authors\":\"J. Jain, R. Mukherjee, M. Fujita\",\"doi\":\"10.1145/217474.217564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design verification poses a very practical problem during circuit synthesis. Learning based verification techniques prove to be an attractive option for verifying two circuits with internal gates having simple functional relationships. We present a verification method which employs a learning technique based on symbolic manipulation and which can more efficiently learn indirect implications. The method can also learn some useful functional implications. We also present a framework in which an indirect implication technique is integrated with an OBDD based verification tool. We present highly efficient verification results on some ISCAS circuits as well as on some very hard industrial circuits.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Verification Techniques Based on Learning
Design verification poses a very practical problem during circuit synthesis. Learning based verification techniques prove to be an attractive option for verifying two circuits with internal gates having simple functional relationships. We present a verification method which employs a learning technique based on symbolic manipulation and which can more efficiently learn indirect implications. The method can also learn some useful functional implications. We also present a framework in which an indirect implication technique is integrated with an OBDD based verification tool. We present highly efficient verification results on some ISCAS circuits as well as on some very hard industrial circuits.