射频指纹增强的多智能体强化学习方法

Joseph M. Carmack, Steve Schmidt, Scott Kuzdeba
{"title":"射频指纹增强的多智能体强化学习方法","authors":"Joseph M. Carmack, Steve Schmidt, Scott Kuzdeba","doi":"10.1145/3468218.3469037","DOIUrl":null,"url":null,"abstract":"Deep learning based RF Fingerprinting has shown great promise for IoT device security. This work explores various multi-agent reinforcement learning approaches to enable RF Fingerprint enhancement for an ensemble of transmitters. A RiftNetTM Reconstruction Model (RRM) is used to learn a latent Wi-Fi signal representation and how to reconstruct from that latent representation at the transmitter such that the reconstruction uniquely excites parts of the front-end to enhance the fingerprint. Deep reinforcement learning is then employed to learn the RRM control policy. Details on the design of the control interface, state representation, and rewards structure are presented for four different policy approaches. The resulting computational and security characteristics are discussed.","PeriodicalId":318719,"journal":{"name":"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Agent Reinforcement Learning Approaches to RF Fingerprint Enhancement\",\"authors\":\"Joseph M. Carmack, Steve Schmidt, Scott Kuzdeba\",\"doi\":\"10.1145/3468218.3469037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning based RF Fingerprinting has shown great promise for IoT device security. This work explores various multi-agent reinforcement learning approaches to enable RF Fingerprint enhancement for an ensemble of transmitters. A RiftNetTM Reconstruction Model (RRM) is used to learn a latent Wi-Fi signal representation and how to reconstruct from that latent representation at the transmitter such that the reconstruction uniquely excites parts of the front-end to enhance the fingerprint. Deep reinforcement learning is then employed to learn the RRM control policy. Details on the design of the control interface, state representation, and rewards structure are presented for four different policy approaches. The resulting computational and security characteristics are discussed.\",\"PeriodicalId\":318719,\"journal\":{\"name\":\"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468218.3469037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468218.3469037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于深度学习的射频指纹识别在物联网设备安全方面显示出巨大的前景。这项工作探讨了各种多智能体强化学习方法,以实现射频指纹增强的发射机集合。使用RiftNetTM重建模型(RRM)来学习潜在的Wi-Fi信号表示,以及如何从发射器的潜在表示中重建,以便重建唯一地激发前端部分以增强指纹。然后采用深度强化学习学习RRM控制策略。详细介绍了四种不同策略方法的控制接口、状态表示和奖励结构的设计。讨论了计算特性和安全特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent Reinforcement Learning Approaches to RF Fingerprint Enhancement
Deep learning based RF Fingerprinting has shown great promise for IoT device security. This work explores various multi-agent reinforcement learning approaches to enable RF Fingerprint enhancement for an ensemble of transmitters. A RiftNetTM Reconstruction Model (RRM) is used to learn a latent Wi-Fi signal representation and how to reconstruct from that latent representation at the transmitter such that the reconstruction uniquely excites parts of the front-end to enhance the fingerprint. Deep reinforcement learning is then employed to learn the RRM control policy. Details on the design of the control interface, state representation, and rewards structure are presented for four different policy approaches. The resulting computational and security characteristics are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信