基于支持向量机的药材识别

Zhiyuan Ming, Jin He, Chao Huang, Yu Lei
{"title":"基于支持向量机的药材识别","authors":"Zhiyuan Ming, Jin He, Chao Huang, Yu Lei","doi":"10.1109/WCICA.2012.6359366","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a machine learning theory based on statistical learning algorithms, SVM based on kernel function has lots of unique advantages on solving the small sample, nonlinear and high dimensional pattern recognition. This article al so uses BP neural networks, Support Vector Machine based on PSO algorithm and so on to be compared to identify propolis in Yunnan. Compared with traditional algorithms, it can solve the small sample, nonlinear and other issues. The experiments show the performance is good when using SVM kernel function on solving the herbs recognition.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of crude drugs based on SVM\",\"authors\":\"Zhiyuan Ming, Jin He, Chao Huang, Yu Lei\",\"doi\":\"10.1109/WCICA.2012.6359366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) is a machine learning theory based on statistical learning algorithms, SVM based on kernel function has lots of unique advantages on solving the small sample, nonlinear and high dimensional pattern recognition. This article al so uses BP neural networks, Support Vector Machine based on PSO algorithm and so on to be compared to identify propolis in Yunnan. Compared with traditional algorithms, it can solve the small sample, nonlinear and other issues. The experiments show the performance is good when using SVM kernel function on solving the herbs recognition.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6359366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6359366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)是一种基于统计学习理论的机器学习算法,基于核函数的支持向量机在解决小样本、非线性和高维模式识别方面具有许多独特的优势。本文还采用BP神经网络、基于粒子群算法的支持向量机等方法对云南蜂胶进行了对比识别。与传统算法相比,它能解决小样本、非线性等问题。实验结果表明,利用支持向量机核函数求解药材识别具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of crude drugs based on SVM
Support Vector Machine (SVM) is a machine learning theory based on statistical learning algorithms, SVM based on kernel function has lots of unique advantages on solving the small sample, nonlinear and high dimensional pattern recognition. This article al so uses BP neural networks, Support Vector Machine based on PSO algorithm and so on to be compared to identify propolis in Yunnan. Compared with traditional algorithms, it can solve the small sample, nonlinear and other issues. The experiments show the performance is good when using SVM kernel function on solving the herbs recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信