增量Nyström低秩分解动态学习

Lin Zhang, Hongyu Li
{"title":"增量Nyström低秩分解动态学习","authors":"Lin Zhang, Hongyu Li","doi":"10.1109/ICMLA.2010.87","DOIUrl":null,"url":null,"abstract":"Eigen-decomposition is a key step in spectral clustering and some kernel methods. The Nyström method is often used to speed up kernel matrix decomposition. However, it cannot effectively update eigenvectors of matrices when datasets dynamically increase with time. In this paper, we propose an incremental Nyström method for dynamic learning. Experimental results demonstrate the feasibility and effectiveness of the proposed method.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incremental Nyström Low-Rank Decomposition for Dynamic Learning\",\"authors\":\"Lin Zhang, Hongyu Li\",\"doi\":\"10.1109/ICMLA.2010.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eigen-decomposition is a key step in spectral clustering and some kernel methods. The Nyström method is often used to speed up kernel matrix decomposition. However, it cannot effectively update eigenvectors of matrices when datasets dynamically increase with time. In this paper, we propose an incremental Nyström method for dynamic learning. Experimental results demonstrate the feasibility and effectiveness of the proposed method.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

特征分解是谱聚类和一些核聚类方法的关键步骤。Nyström方法常用于加速核矩阵分解。然而,当数据集随时间动态增长时,它不能有效地更新矩阵的特征向量。在本文中,我们提出了一种增量Nyström动态学习方法。实验结果证明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Nyström Low-Rank Decomposition for Dynamic Learning
Eigen-decomposition is a key step in spectral clustering and some kernel methods. The Nyström method is often used to speed up kernel matrix decomposition. However, it cannot effectively update eigenvectors of matrices when datasets dynamically increase with time. In this paper, we propose an incremental Nyström method for dynamic learning. Experimental results demonstrate the feasibility and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信